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ABSTRACT

This article introduces a novel algebraic framework designed to harness data structures and relational
dependencies. Specifically, we aim to identify the optimal factorization of the joint probability func-
tion while accommodating dependency constraints that are less restrictive than traditional Markovian
dependencies. In this context, our approach can be considered as an extension of Hammersley and
Clifford’s random field theorem, using the principles of Boolean rings and principal ideals. In addition
to presenting our new method, we present a new proof for the fundamental theorem of random fields.
Finally, we prove the practical effectiveness of our methodology through an application in argument
mining. Our findings highlight the potential of this framework in various data-driven applications.

Keywords Markov Random Fields · Boolean Algebra · Artificial Intelligence

1 Introduction

The field of graph structured data is increasingly important in a variety of fields, including computational biology [1],
natural language processing [2], and social science [3]. One of the main challenges in this area is understanding the
underlying structure of the data and the analysis of the functions defined on these data, as highlighted by [4] in their
2017 paper on geometric deep learning.

Markov Random Fields, first introduced by Hammersley and Clifford in [5], have been a fundamental tool for
understanding data structures, providing factorization formulae for Markovian lattices. However, these models have
limitations in terms of expressiveness, due to the strong assumption on dependencies between neighbours, and recent
studies [6] [7] have shown the limitations of Graph Neural Networks (GNNs) as well.

The objective of this paper is to propose an algebraic framework to the problem of finding the best neural network
architecture given the underlying data structure and dependency relationships involved. We provide a new methodology
for exploiting data structure and relational dependency, which relaxes the Markovian assumption of Conditional Random
Fields (CRFs). Specifically, we exploit the property of principal ideals in a Boolean ring using the theory of Boolean
rings presented by Stone in [8] to find the best factorization of the join probability function that respects dependency
constraints.

We begin by introducing the theory of Boolean rings and the concept of blackening operators in order to prove a
factorization result. As a consequence, the joint probability function in a graph can be factorized under some dependency
constraints. This approach is intended to serve as a novel and general methodology for exploiting data structures and
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relational dependencies in a graph. To further showcase the effectiveness of our proposed approach, we provide an
example of its application in the context of argument mining.

2 Related works

Boolean algebra of projectors, as introduced by [8] in his representation theorem for Boolean algebras, provides a
powerful tool for understanding data structures. Stone’s theorem states that every Boolean algebra is isomorphic to a
certain field of sets, and this result has been widely used in various fields such as the spectral theory of operators on a
Hilbert space ([9]), Boolean algebra of projectors ([10]) ([11]) and lattices structures ([12] and [13]). These results also
lead to many results in category theory related to topological space ([14]).

Markov Random Fields (MRFs) have been a fundamental tool for understanding data structures since their introduction
in [5]. They provide a way to factorize graphs under the Markovian assumption, and have been successfully applied in
various fields such as Natural Language Processing in [15] and [16] and Computer Vision in [17]. However, MRFs
have limitations in terms of expressiveness due to the strong assumption of dependencies between neighbours, which
has been highlighted in previous research studies : [18], [19] and [20].

In addition, working with oriented graphs poses several additional challenges, particularly in terms of the representation
and analysis of their underlying structure. Many efforts have been made to address these challenges, including the use
of Graph Neural Networks (GNNs) with architectures such as BiGraphSAGE [21], LSTM [22], and Neural Trees [23].
These architectures aim to exploit the tree structure present in directed graphs, allowing for more accurate and efficient
representations of the graph.

3 The Boolean ring of blackening operators

3.1 Preliminaries: Boolean rings and ideal factorization

The main goal of this subsection is to provide an algebraic framework for the rest of the paper. More precisely, we
define conditions under which unions and intersections of certain ideals can be reduced into more compact forms. An
abstract formulation of the I(β) used in [5] for the CRF proof is stated and proved in Theorem 1 using elementary
results from the theory of Boolean rings and principal ideals. This theorem will then be applied in Section 3.2.

Definition 1 Let A be a commutative ring for the operations ⊕ and ⊗ (with neutral elements denoted by 0 and 1). We
say that A is a Boolean ring if any element a ∈ A is idempotent, i.e. a ⊗ a = a. On the Boolean ring A, we shall
consider the partial order ≤ defined by

∀(b, c) ∈ A2, b ≤ c if, and only if, b⊗ c = b. (1)

A standard result on Boolean rings is that any subset of the ring admits a least upper bound ∨ and a greatest lower
bound ∧. For all a, b ∈ A, one has

a ∨ b = a⊕ b⊕ a⊗ b, a ∧ b = a⊗ b.

In addition, the complementary of a ∈ A is denoted by a′ = 1⊕ a. Note that the set A, equipped with ∨, ∧ and the
complementary, is endowed with a Boolean algebra structure, see e.g. [24]. Conversely on any Boolean algebra A,
it can be defined two operations ⊕ and ⊗ such that A is a Boolean ring. For completeness, more details on Boolean
algebras and Boolean rings and given in supplementary material A.

Definition 2 A non empty subset I of a Boolean ring is an ideal if, and only if,

• I is closed under the addition: ∀(a, b) ∈ I2, a⊕ b ∈ I;

• I is stable with respect to the partial order ≤ : ∀(a, c) ∈ I ×A, c ≤ a implies that c ∈ I.

The ideal generated by a ∈ A is defined as I(a) = {b ∈ A, b ≤ a}. An ideal is said to be principal if it is generated by
one of its elements.

We also need to introduce the definition of the orthogonal of a subclass of a Boolean ring.

Definition 3 Two elements a and b in a Boolean ring are said to be orthogonal if a⊗ b = 0. Two non-void subclasses
of a Boolean ring are said to be orthogonal if every element of one is orthogonal to every element of the other. We
denote by I(a)⊥ the class of all elements orthogonal to every element of I(a).
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Defining finally the addition of subsets of a Boolean ring as I + J = {i⊕ j | i ∈ I and j ∈ J}, we are now able to
state and prove the main theorem of this section.

Theorem 1 Let (aj)j∈J and (bj)j∈J be two sets of elements of a Boolean ring A. Then we have

I

∏
j∈J

(aj ∨ bj)

 =
∑

K⊂P(J)

⋂
k1∈K

I(ak1)
⋂

k2∈J\K

I(bk2)
⋂

k3∈J\K

I(a′k3
),

where P(J) is the set of all the subsets of J and
∑

is the addition and
⋂

the intersection on sets.

Before proving this theorem, we recall Theorem 31 of [8].

Lemma 1 The class P of all principal ideals in a Boolean ring A is isomorphic to the Boolean ring A itself in
accordance with the following relations :

1. I(a) = I(b) if and only if a = b.

2. I(a⊕ b) = I(a) + I(b) = (I(a)I(b)⊥) ∪ I(a)⊥I(b).

3. I(a ∨ b) = I(a) ∪ I(b), I(a ∧ b) = I(a) ∩ I(b) and I(a′) = I(a)⊥.

Proof 1 (Proof of Theorem 1) We first deduce from Lemma 1 that

I(a ∨ b) = I(a⊕ b⊕ a⊗ b) = I(a⊕ b⊗ (1⊕ a)),

= I(a⊕ b⊗ a′) = I(a) + I(b⊗ a′),

= I(a) + I(b) ∩ I(a′) = I(a) + I(b) ∩ I(a)⊥.
(2)

We can now develop, using again Lemma 1,

I

(∏
j∈J

(aj ∨ bj)

)
=
⋂
j∈J

(I(aj) + I(bj) ∩ I(aj)⊥),

=
∑

K⊂P (J)

⋂
k1∈K

I(ak1)
⋂

k2∈J\K

I(bk2) ∩ I(ak2)
⊥,

=
∑

K⊂P (J)

⋂
k1∈K

I(ak1)
⋂

k2∈J\K

I(bk2)
⋂

k3∈J\K

I(a′k3
),

(3)

which yields the result.

To clarify this proof, we take the sum over all the possible subsets of J . We denote K as one of the given subsets. As
proved in Equation 3, when we take the product of a sum, we take all the possible combination which means that there
is a subset of nodes K where the chosen term is I(ak1) and the other J\K is for I(bk2) inter I(a′k3

).

To apply this result to graphs, we now need to introduce a framework in relation with graphs and compatible with
Boolean rings.

3.2 Definition of the polynomial blackening operators

The main goal of this subsection is the construction of the pure blackening operators and the polynomials operators.

Definition 4 Let G be a (oriented or not) graph with Z = {zi} the set of nodes of G and E = (zi, zj) the set of the
edges of G. We define the colors C as a finite set of elements {cj} containing the color "black". A coloration of a graph
G is an application χ from Z to C. The set of colorations will be denoted by C.

For all coloration χ, we denote by χY the application that attributes the same color as χ to any node of the graph except
for the set of nodes Y which are blacken. In particular, χZ corresponds to a totally black coloration of the graph.

We now consider the set F of real-valued functions defined on the colorations C of the graph G and which attribute
the value zero to χZ . Our main quantity of interest will be the set of operators on F , on which we first define three
operations ∨, ∧ and ′. We denote by 1 and 0 respectively the identity operator and the null operator.

3
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Definition 5 Let P and Q be two operators on F , we define:

P ∨Q = P +Q− P ◦Q, P ∧Q = P ◦Q, ¬P = 1− P, (4)

where + and − are induced by the corresponding operations on R and ◦ is the composition operator.

Now we consider a specific class of operators on F (illustrated below on Figure 1) and the ring generated by this class.

Definition 6 Considering a subset Y of Z, we define the operator BY , called the pure blackening operator, as the
following operator on F:

∀F ∈ F , ∀χ ∈ C, (BY F )(χ) = F (χY ). (5)

Figure 1: Illustration of the action of a pure blackening operator on a function F where the set of nodes {1, 2, 3, 4} are
blackened. The input graph of the function is partially blackened.

Definition 7 Let {Xi}i∈[1:n] and {Yj}j∈[1:m] be two finite sets of subsets of Z. We define the monomial blackening
operator MX,Y associated with the sets {Xi}i∈[1:n] and {Yj}j∈[1:m] as

MX,Y = ∧
1≤i≤n

BXi
∧

1≤j≤m
(¬BYj

).

Let {MXa,Y a}a∈[1:ℓ] be a set of monomial blackening operators, we define the polynomial blackening operator P as

P = ∨
1≤a≤ℓ

MXa,Y a .

We denote the set of monomial blackening operators as M and the set of polynomials operators as P .

3.3 Characteristics of pure blackening operators and polynomials operators

In this subsection, we presents some results about operations over pure blackening operators and polynomials operators
which will be required in the next subsection to construct the Boolean algebra of polynomial blackening operators.

Lemma 2 Let W , X and Y be three subsets of Z. The pure blackening operators BW , BX , BY have the following
properties

• Complement: (1−BX) is the unique operator B satisfying

BX ∨B = 1 and BX ∧B = 0. (6)

We will denote the complement of an operator B as ¬B = (1−B). We have the two De Morgan’s laws:

¬(BX ∨BY ) = ¬BX ∧ ¬BY and ¬(BX ∧BY ) = ¬BX ∨ ¬BY .

• Commutativity:

– For ∧: BW ∧BX = BX ∧BW and BW ∧ ¬BX = ¬BX ∧BW ,

– For ∨:
BW ∨BX = BX ∨BW and BW ∨ ¬BX = ¬BX ∨BW .

• Associativity:

(BW ∧BX) ∧BY = BW ∧ (BX ∧BY ) and (BW ∨BX) ∨BY = BW ∨ (BX ∨BY ).

4
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• Distributivity:
BW ∧ (BX ∨BY ) = (BW ∧BX) ∨ (BW ∨BY ).

The proof of this lemma can be found in Proof A.2 in the Appendix.

Lemma 3 Let P be the set of polynomials operators. We have the following properties :

1. P is stable by ∧,∨ and ¬.

2. The elements of P commutes two by two:

∀(P,Q) ∈ P2, P ∧Q = Q ∧ P.

3. Every element of P is a projector:
∀P ∈ P, P ∧ P = P.

The proof of this lemma can be found in Proof A.3 in the Appendix.

3.4 The Boolean algebra of polynomial blackening operators

The main goal of this subsection is the construction of the Boolean algebra of polynomial blackening operators. We
will first present the structure, then apply Theorem 1.

Definition 8 We define the relation ≤P on the set P as follows.

For all P,Q ∈ P2, P ≤P Q if, and only if, P ∧Q = Q which is equivalent to P ∨Q = P

Lemma 4 The set (P,≤P) is a partially ordered set and the operations ∨ and ∧ in Definition 8 are respectively
the least upper bound and the greatest lower bound as defined at the beginning of the Section. Moreover, ¬ is the
complementary in the sense of Boolean Algebra.

The proof of Lemma 4 can be found in Proof A.4 in the Appendix. In the sequel, we will denote ≤P as ≤ without
ambiguity.

Proposition 1 The set of polynomial blackening operators P with the relation ∧, ∨ and ¬ is a Boolean algebra. It is
the smallest Boolean algebra containing the pure blackening operators. Moreover BZ is the neutral element of P for
the addition and B∅ is the identity element of P (neutral element for ∧).

The proof of Proposition 1 can be found in Proof A.5 in the Appendix. As a consequence and according to Subsection
3.1, one can define two operations ⊕ and ⊗ on P such that it is a Boolean ring.

Let us now apply Theorem 1, considering the union and intersection of pure blackening operators.

Corollary 1 With the same notations as in Theorem 1, consider a subset K ⊂ J . Let {Xk} and {Yk} be two subsets
of P (J) indexed by k and denote ak = BXk

and bk = BYk
. We identify necessary conditions in order to the term(⋂

k1∈K I(ak1
)
⋂

k2∈J\K I(bk2
)
⋂

k3∈J\K I(a′k3
)

)
is not equal to {0}:

1.
⋃

k∈K Xk ̸= Z and
⋃

j∈(J\K) Yj ̸= Z.

2. ∀j ∈ (J \K), Xj ̸⊂
⋃

j′∈(J\K) Yj′ .

3. ∀j ∈ J \K, ∀k ⊂ K, Xj ̸⊂ Xk.

4. ∀j ∈ J \K, ∀k ⊂ K, Xk ∪ Yj ̸= Z.

5. ∀(j, j′) ∈ (J \K)2, (1−BXj
)(1−BXj′ ) ̸= 0.

This is a direct application of Theorem 1, the complete proof can be found in supplementary material A.6. This corollary
will be our main tool for the reduction of principal ideals associated to the Boolean algebra of the polynomial blackening
operators.

5
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4 A new proof of the fundamental theorem of random fields

Before we explore a practical example, it is essential to begin with a new proof of the so-called fundamental theorem of
random fields of Hammersley and Clifford [5]. This showcases the broad applicability and generality of our algebraic
framework compared to the fundamental theorem of random fields.

Definition 9 Let χ be a coloration of the graph G. We denote by the P(ω = χ) (in short P(χ)) the probability that a
random coloring ω matches χ. Moreover, for all Y ⊂ Z, we denote by P(χY ) the probability that the restriction of ω
on Y matches the restriction of χ on Y. With the notation CX,χ = {ξ ∈ C | ∀zi ∈ X, ξ(zi) = χ(zi)},

P(χX) = P(ω|X = χ|X) =
∑

ξ∈CX,χ

P(ξ).

Furthermore, for all X ⊂ Z, Y ⊂ Z, P(χX , χY ) is the probability that ω simultaneously has the partial colouring
χ|X on X as well as the partial colouring χ|Y on Y. In addition, we note P(χX |χY ) the probability that the random
colouring ω matches the specified colouring χ on the set X knowing that ω as the colouring χ|Y on the set Y.

P(χX |χY ) =

∑
ξ∈CX∪Y,χ P(ξ)∑
ξ∈CY,χ P(ξ)

=
P(χX∪Y )

P(χY )
. (7)

Definition 10 A random variable is said to be globally Markovian if it is Markovian for every subsets of Z. With the
notation previously introduced, the Markovian assumption can be formulated as

∀X ⊂ Z, P(χX |χZ\X) = P(χX |χ∂X), (8)

where ∂X is the set of all the neighbours of the nodes of X .

∂X = {zj ∈ Z\X | ∃zi ∈ X, (zi, zj) ∈ E or (zj , zi) ∈ E},

where E is the set of edges of G.

Definition 11 We define a clique of a graph as a set of nodes where each node is neighbour of each other. We denote
by L the set of cliques of G. Moreover, given a coloration χ of the graph, we define a light clique as a clique where
every node is not black. We denote this set L(χ).

Theorem 2 (Hammersley-Clifford’s theorem [5]) Let ω be a random coloring of Z which follows the globally Marko-
vian properties. Suppose that P(ω = χZ) ̸= 0. Then there exist S ⊂ F such that we can factorize the probability as
follows:

P(χ) = P(χZ) exp

( ∑
Y⊂L(χ)

S(χZ\Y )

)
. (9)

Our reformulation of Theorem 2 consists in identifying a specific principal ideal in the Boolean ring of Blackening
operators and reducing it. Let us introduce the specific principal ideal I(β).

Definition 12 Let Z be the set of nodes of a graph G and for all node zi ∈ Z, let ∂zi the set of all its neighbours. We
define the polynomial operator βi as follows:

βi = Bzi ∨BZ\{zi∪∂zi}.

For X ⊂ Z, we define
βX = BX ∨BZ\{X∪∂X}.

And we also define β as the product of all the βi,

β =
∏
zi∈Z

βi =
∏
zi∈Z

(Bzi ∨BZ\(zi∪∂zi)).

Let us state two technical lemmas. We first reduce the formulation of I(β) using Corollary 1.

6
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Lemma 5 I(β) can be decomposed as :

I(β) =
∑

X∈L(χ)∪{∅}

I(BZ\X), (10)

where L(χ) is the set of light cliques of the graph G associated to the coloration χ.

The proof of this lemma can be found in Proof A.7 in the Appendix.

Lemma 6 Let χ be a coloration of the set of nodes Z. Suppose that ω is globally Markovian. For all X ⊂ Z, we
introduce the function

QX = log(P(χX)).

Then we have
∀X ⊂ Z, QZ = βXQZ .

The proof of this lemma can be found in Proof A.8. Using Lemma 5 and Lemma 6, we are now able to provide a new
proof of Hammersley-Clifford’s Theorem.

Proof 2 (Proof of Theorem 2 ) Let G be a graph and χ be a coloration on the graph G. Let ω be a random coloring
of Z which follows the globally Markovian properties. Suppose that P(ω = χZ) ̸= 0. Using Lemma 6 and remarking
that QZ = log(P(χ)), we get

∀zi ∈ Z, βi log(P(χ)) = log(P(χ)).
Hence,

β log(P(χ)) =
∏
zi∈Z

βi log(P(χ)) = log(P(χ)).

Thus, β log(P(χ)) = log(P(χ)).
Moreover, by Lemma 5, β ∈ I(β) =

∑
X∈L(χ)∪{∅} I(BZ\X). Thus, there exists a set of projectors EZ\X such that

EZ\X ∈ I(BZ\X) and

β =
∑

X∈L(χ)∪{∅}

EZ\X =
∑

X∈L(χ)∪{∅}

BZ\XEZ\X , (11)

log(P(χ)) = β log(P(χ)) =
∑

X∈L(χ)∪{∅}

BZ\XEZ\X log(P(χ)),

=
∑

X∈L(χ)∪{∅}

EZ\X log(P(χZ\X)).
(12)

Finally, as P(ω = χZ) ̸= 0, with the notation S(χZ\X) = EZ\X log(P(χZ\X)), we have the final result:

P(χ) = P(χZ) exp(
∑

X∈L(χ)

S(χZ\X)). (13)

5 Methodology

In this section, we present a strategy to reduce deep learning models on graphs. We first sketch the main steps of
this strategy, then we explain why this method works by explaining the link between propositional logic and random
variables respecting dependency constraints. An example of application will be provided in Section 6, where this
methodology is exemplified on tree structure dependencies.

5.1 Description of the methodology

We now propose a methodology that generalized the above proof of the fundamental theorem of random fields. This
methodology splits into four steps, using the results of Section 3.2 and is aimed to develop new machine learning
architectures. The notion of dependency between nodes is essential in this methodology. We shall say that a node
zi is independent of another node zj if, and only if, zj can be blackened independently of zi. The strategy can be
summarized as follows.

7
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x y x ∩ y x ∪ y
False False False False
True False False True
False True False True
True True True True

Table 1: Truth table for binary operators.

• Step 1: Identification of the invariance properties. Identify the dependency relationships between the
nodes in terms of local invariance properties. The goal of this first step is to identify locally which nodes are
independent of which other nodes.

• Step 2: Construction of the associated blackening operators. For each node zi of the graph G, formulate
the invariance properties identified in Step 1 in terms of invariance under a specific blackening operator β.

• Step 3: Link to probability function. Prove that for a random coloration ω satisfying the invariance properties
identified in Step 1, there holds

β log(P) = log(P).
• Step 4: Reduction of the blackening operators. Use a result similar to Corollary 1 to find the reduced form

of the principal ideal generated by β.

5.2 Clarifying Step 2: leveraging the link between Boolean algebra and propositional logic

In this section we highlight a useful isomorphism between the Blackening algebra studied above and the two-element
Boolean algebra associated with the fact that a function is invariant or not to some operators.

Definition 13 We call the two-element Boolean Algebra the Boolean algebra

({True,False},∪,∩,False,True),
where the operations are defined in the truth table 1.

Let us now define the propositional function ψF (in the sense of propositional logic) related to the invariance properties
of elements of F . The notations F and P were introduced in Section 3.

Definition 14 For all function F ∈ F and P ∈ P , we set

ψF (P ) = True if PF = F and ψF(P) = False otherwise. (14)

This function ψF takes its values in the two-elements Boolean algebra {True,False} (equipped with the operations
∪ and ∩ associated to the classical truth table of binary logic). A key feature is that ψF is a morphism between the
Boolean algebra P and this two-elements Boolean algebra.

Proposition 2 For all F ∈ F , ψF is a morphism in the following sense.
For all (P,Q) ∈ P2, we have

1.
ψF (B∅) = True, and ψF(BZ) = False,

2.
ψF (P ∨Q) = ψF (P ) ∪ ψF (Q),

3.
ψF (P ∧Q) = ψF (P ) ∩ ψF (Q),

4.
ψF (¬P ) = ¬ψF (P ).

The proof of Proposition 2 can be found in Appendix A.9. This result explains why in Step 2 the construction of βi
based on two polynomial operators and the definition of β as the product of the βi is fruitful.

In the next Section, we examplarize our strategy on a tree structure with non-symmetric dependency relations between
nodes.

8
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6 Application to argument mining

In this section, we provide a toy model in order to illustrate how the above theoretical framework can be applied. In
the context of argument mining, we show how to leverage the additional information provided by annotation schemes
in supervised learning tasks. Indeed in the field of Natural Language Processing (NLP), many tasks depend on the
coherence with the grammatical structure of the sentence, which can be encoded as a directed graph.

In our experimentation (see Subsection 6.3), we investigate an argument mining task presented in [25] that involves
identifying whether argumentative sentences are in favor of or against a given topic. The main challenge associated
with this task is the difficulty in constructing a large dataset, which necessitates the use of pre-trained Large Language
Models and fine-tuning them for our specific task.

Before dealing with our concrete application, we need to introduce a theoretical setting that fits into our methodology.
It will enable us to design an efficient architecture for our argument mining model.

6.1 Definition of an arborescence and a filter in trees

Definition 15 An arborescence is a directed graph G in which, for a specific node u (called the root) and any other
node v, there is exactly one directed path (i.e. a sequence of edges) from u to v . We can view an arborescence as a
directed rooted tree.

Within an arborescence, we can introduce the concepts of children, parents and siblings of a node.

Definition 16 The children (parents) of a node zi is the set of nodes C(zi) (resp. P (zi)) composed of all the nodes zj
where (zi, zj) (resp. (zj , zi)) is an edge of the arborescence.

C(zi) = {zj |(zi, zj) ∈ E}, P (zi) = {zj |(zj , zi) ∈ E}.
The descendants D(zi) (resp. ancestors A(zi)) of zi are defined as the sets of the children (resp. parents) of zi and the
children (resp. parents) of its children (resp. parents) recursively. The siblings Sib(zi) of zi are defined as the set of
nodes which have the same parents as zi.

We extend this notions to any subset Y of the arborescence:

D(Y ) =

( ⋃
zi∈Y

D(zi)

)
\ Y, A(Y ) =

( ⋃
zi∈Y

A(zi)

)
\ Y, Sib(Y ) =

( ⋃
zi∈Y

Sib(zi)

)
\ Y.

One important notion that we will use in the sequel is the filter on an arborescence.

Definition 17 A non-empty subset F of a partially ordered set Q is an ordered filter if the following conditions hold:

• F is downward directed: ∀x, y ∈ F, there exists z ∈ F such that z ≤ x and z ≤ y.

• F is an upper set: for every x ∈ F and p ∈ Q, x ≤ p implies that p ∈ F.

In the case of a tree structure, every set of siblings leaves with their common ancestors (i.e. all ancestors up to the root
of the tree) is a filter for the order induced by the direction of the edges. We denote by F (G) the set of filters of the
graph G.

To enhance the visual understanding of the concept of a clique, Figure 2 offers a comparative representation of the
factorized structure of cliques in graphs and filters in trees.

6.2 Application of the methodology

Let us state the main result of this section.

Theorem 3 Let ω be a random coloring of the set of nodes Z of an arborescence. Assume that the coloring follows the
blackening consistent property (defined below in Step 1) and that P(ω = χZ) ̸= 0. We can factorize the probability as
follows:

∃S ∈ F , P(χ) = P(χZ) exp

 ∑
Y⊂F (G)

S(χY )

 . (15)

In other words, the probability law of colorations can be factorized on the filters of the arborescence.

To prove this theorem, we follow Steps 1, 2, 3 and 4 of our methodology.

9
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Figure 2: Illustration on the difference between the factorization over filter and the factorization over clique. The left
side refers to identifying some cliques over a graph which are the fundamental objects of the Hammersley Clifford’s
Theorem, the right side refer to identifying some filters over a tree which are the fundamental objects of Theorem 3.

Step 1: Identification of the invariance properties.

Definition 18 Let χ be a coloration on the arborescence A. Then χ is said to have the blackening consistency property
if

∀z ∈ A, χ(z) = black if and only if ∀zj ∈ C(z), χ(zj) = black.

This rule propagates the blackening color between branch nodes and leaf nodes. Under this constraint, any node
zi depends on the set of nodes {Sib(zi) ∪ P (zi)}. Moreover, if a node zi does not depends on zj (i.e. we can
blacken zj without changing the coloration of zi) then it also does not depend on C(zj). More generally, the set
zi ∪ Sib(zi) ∪A(zi) ∪D(zi) and its complementary are independent.

Definition 19 Let χ be a coloration on the arborescence A. A random variable is said to be blackening consistent if it
respects the following property:

∀X ⊂ Z, P
(
χX∪D(X)|χZ\(X∪D(X))

)
= P

(
χX∪D(X)|χSib(X)∪P (X)

)
. (16)

Step 2: Construction of the associated blackening operators

We now want to construct the blackening operator associated to the blackening consistency property. Consider a
coloration χ which satisfies the blackening consistency property. Let zj ∈ Z. We analyze the invariance of log(P(χzj ))
under some blackening operators.

Let zi be another node of the arborescence. Using the analysis of Step 1, we have only two possibilities:

• Case 1: zj is independent of zi, the prediction does not depends on zi and thus the log probability is invariant
under the action of the operator Bzi∪D(zi).

Bzi∪D(zi) log(P(χ
zj ) = log(P(χzj ),

which can be reformulated using the propositional function (see Definition 14) as
ψlog(P(χzj )(Bzi∪D(zi)) = True.

• Case 2: zj depends on zi, thus zj ∈ {zi ∪ A(zi) ∪ D(zi) ∪ Sib(zi)}. As the set {zi ∪ A(zi) ∪ D(zi) ∪
Sib(zi)} is independent of its complementary, the log probability is invariant under the action of the operator
BZ\(zi∪A(zi)∪D(zi)∪Sib(zi)), i.e.

BZ\(zi∪A(zi)∪D(zi)∪Sib(zi)) log(P(χ
zj ) = log(P(χzj ),

10
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which can be reformulated using the propositional function (see Definition 14) as

ψlog(P(χzj )(BZ\(zi∪A(zi)∪D(zi)∪Sib(zi))) = True.

This two cases represent all the possibilities, thus

ψlog(P(χzj )(Bzi∪D(zi)) ∪ ψlog(P(χzj )(BZ\(zi∪A(zi)∪D(zi)∪Sib(zi))) = True.

Hence, using the link between the union in propositional logic and the union in Boolean rings, we deduce that

ψlog(P(χzj )(Bzi∪D(zi) ∨BZ\(zi∪A(zi)∪D(zi)∪Sib(zi))) = True.

To simplify the notations, we can introduce βzi as

βzi = BZ\(zi∪A(zi)∪D(zi)∪Sib(zi)) ∨Bzi∪D(zi). (17)

Then
ψlog(P(χzj )(βzi) = True.

As this result is true for all zi ∈ Z, we have ⋂
zi∈Z

ψlog(P(χzj )(βzi) = True.

Using again the link between the intersection in propositional logic and the intersection in Boolean ring, we get

ψlog(P(χzj )(
∏
zi∈Z

βzi) = True.

To simplify the notations, we can introduce
β =

∏
zi∈Z

βzi . (18)

Then
ψlog(P(χzj )(β) = True.

Step 3: Link with the probability function

This step, which states that log(P (χ)) is invariant under β, is purely calculative as the relation between probability and
Blackening operators is already presented in Step 6.2. The full proof can be found in Appendix A.10.

Step 4: Reduction of the blackening operators

We can now formulate the factorization of β in the following lemma.

Lemma 7 I(β) can be decomposed as
I(β) =

∑
I∈F (G)

I(BI), (19)

where F (G) is the set of all the sets of leaves with their common ancestors.

The Proof of Lemma 7 can be found in supplementary materials E.10. The main idea of the proof is to identify the
structure which do not vanish under the conditions given in Corollary 1.

The proof of Theorem 3 is complete.

6.3 Experimentations

6.3.1 Dataset presentation

The dataset used in our study was introduced by [25]. This dataset stands out as one of the limited resources available
that provides token and sentence-level annotations for argument units. It comprises 8,000 sentences, evenly distributed
across 8 topics, and can be employed for the tasks of argument unit identification and argument polarity identification.
Within each topic, the words in the sentences are annotated with three labels: PRO (supporting arguments), CON
(opposing arguments), and NON (non-argumentative). We selected this dataset due to its stringent rules for propagating
token-level labels to sentence-level labels. Specifically, if only NON labels are present, the sentence is labeled as NON.

11
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Figure 3: Illustration of the architecture of the proposed model incorporating a filter layer.

In cases where there are only PRO labels (or only CON labels), the corresponding label is assigned. When both PRO
and CON labels are present, the more frequently occurring label is assigned (or randomly chosen in the event of a tie).
The PRO and CON labels therefore prevail over the NON label.

We assigned labels to the internal nodes (NT) of the constituency tree to capture their representations. Since these
annotations were not available in the dataset, we opted to annotate the internal nodes using the same labeling rules
described earlier for sentence labeling. This decision ensures the internal logic of the labeling process is preserved.

6.3.2 Exploitation of our Theorem 3 in the construction of the model

By considering node labeling equivalent to node coloring, as discussed in Subsection 3.2, it can be seen that our
annotation rules defined in the previous subsection adhere to the consistency property outlined in Definition 18. This
motivates us to factorize the model with respect to the filter of the arborescence. Following Theorem 3, we are authorized
to factorize the log probability of the labelization of the arborescence into a sum of components reliant solely on the
filters present within the tree.

To assess the effectiveness of our approach compared to the baseline method proposed by [25], we replaced the CRF
layer from their original paper with a combination of a GAT [26] layer and a novel filter layer. As presented in Figure 3,
our model consists of an LLM (BERT [27]) for token embedding, followed by a GAT layer to obtain embeddings for
interior nodes, and the results are further refined using the filter layer.

Our model architecture, as depicted in Figure 3, consists of four modules.

• Step 1: Calculation of sentence embedding using a Language Model (LLM). To implement the BERT
model, we used the transformers library [28]. This choice aligns with the original approach taken in the
reference article [25], allowing us to compare our results with their baseline effectively. This module is called
"LLM Module" in Figure 3.

• Step 2: Construction of the sentence’s constituent tree. To construct the constituency tree, we employed the
Berkeley Neural Parser (BENEPAR) [29]. BENEPAR is a multilingual constituency parser that benefits from
unsupervised pre-training across multiple languages. This model provides weights for 12 languages and offers
a simple API integrated into Spacy. Thus, it serves as an excellent choice for accurate results within a larger
pipeline. However, this additional preprocessing step necessitates an exact match between the tokenizations
used by BENEPAR and BERT models. Consequently, sentences that do not have a match were excluded,
including samples from the in-domain test set. As a result, the cross-domain split had 3960 samples in the
training set (instead of 4000), 790 samples in the development set (instead of 800), and 1959 samples in the
test set (instead of 2000). Similarly, the in-domain split had 4157 samples in the training set (instead of 4200),
593 samples in the development set (instead of 600), and 1159 samples in the test set (instead of 1200). In
total, less than 2 % of the dataset was removed. This module is called "Constituency Parsing Module" in
Figure 3.

• Step 3: Computation of a hidden representation for each word through a Graph Neural Network based
on message passing. The GNN module is implemented using the PyTorch Geometric library [30], specifically
using the Graph Attention Network (GAT) model. During the development of this model, one of the challenges
encountered was the management of batches. In PyTorch Geometric, each input is associated with a graph
represented by a two-dimensional matrix containing edges between nodes. To handle graphs of varying sizes,
the batch matrix used in PyTorch is unfolded into a list, and a list of indices is used to link the input data to
the batch indices. Consequently, switching between these two representations to incorporate both BERT and
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GNNs within our model induces a computational speed reduction. This module is called "Graph Neural
Network Module" in Figure 3.

• Step 4: Calculating the final output with Recurrent Neural Networks on Filter Structures. Upon
completing these three steps, we leverage the outcome of Theorem 3 to construct the final module of our
model. Since the node count of each filter varies, we opted for multiple RNN layers. We input the nodes
composing the filter in a top-to-bottom order based on the tree structure. The multi-layer RNN module, is
designed to run on each individual tree filter. Its purpose is to facilitate information propagation exclusively
among nodes residing within the same filter. Employing an RNN for this task could have been substituted with
alternatives like an LSTM or an attention layer. This module is called "Filter Module" in Figure 3.

6.3.3 Training and hyperparameters optimization

To select the optimal hyperparameters for our model, we have chosen the Optuna library [31], which is known for its
cost-effective hyperparameter optimization capabilities. Optuna offers two key advantages for our study.

Searching strategy: Optuna employs a relational sampling method that can uncover underlying relationships among
hyperparameters through independent samplings.

Pruning strategy: Optuna incorporates the Asynchronous Successive Halving algorithm [32] to interrupt unpromising
trials based on intermediate F1 score values. This algorithm allows trials to continue only if their actual F1 scores are
among the best intermediate results.

In the overall training process, we loaded the BERT model and a data batch into memory. Our implementation required
30 GB of memory (GPU or CPU). Consequently, we conducted the global training experiments on the CPU, which took
approximately 2 hours per iteration, resulting in around 30 iterations per model configuration. On the other hand, the
transfer learning model training consumed about 7 GB of memory, allowing it to run on the GPU. Hence, we performed
approximately 200 trials for model hyperparameter optimization.

Table 2 provides an assessment of the significance of different hyperparameters in our model. Notably, the learning rate
and the maximum allowed gradient value emerged as the most crucial hyperparameters. Empirically, we observed that
when the gradient is unconstrained, the model tends to converge to a local optimum where each word is assigned the
label "NO." This local optimum arises due to the dataset’s imbalance, which predominantly favors the absence of an
argument.

Test Intervals Best values Parameters importance
Learning rate 10−5 to 10−3 2.8 · 10−5 30 %
Maximum gradient allowed 10−1 to 102 9.7 49 %
Number of GAT layers 1 to 3 2 2 %
Number of unit per GAT layers 50 to 300 290 and 100 2 %
Number of heads per GAT layers 1 to 3 3 and 3 7 %
Number of linear layers 1 to 3 2 5 %
Number of unit per linear layers 50 to 250 100 and 100 5 %

Table 2: Feature importance of the BERT-GAT-FILTER model

6.3.4 Results analysis

As shown in Table 3, our model achieves superior results for sentence-level prediction, aligning with the inherent
structure of our model. The two main errors previously observed on this dataset were the span of an argumentative
segments was not correctly recognized and the stances are not correctly classified. In this paper, we focus on the span
detection problem and improve the method for identifying the boundaries of an ADU. However, we do not have a strict
adherence to grammatical correctness. As mentioned in [25], this would require that all spans containing arguments be
clauses.

6.3.5 Analyzing computational costs

The complexity of our approach heavily hinges on the nature of the studied dependency relation. Identifying filters
within the tree structure, as depicted in Figure 2, holds low computational complexity. Filters in a tree consist of a set
of leaf nodes sharing a common parent node with all ancestors up to the root. For instance, in a bipartite graph, the
complexity scales by 1.5 ∗m, with m representing the number of leaf nodes.
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Token level Sentence Level
Majority baseline 0.254 * 0.211 *

FLAIR 0.613 * 0.620 *
BERT base 0.654 * 0.673 *
BERT large 0.683 * 0.709 *

BERT large - Linear chain CRF 0.696 * 0.744 *
BERT large - GAT - Filter model 0.72 0.76

Human performance 0.763 * 0.799 *

Table 3: F1- score of the different models at token level and sentence level on the test dataset (the results with a star (*)
have been directly taken from [25]), they are reproduced in the code presents in supplementary material.

In contrast, as highlighted by the Hammersley-Clifford theorem and exemplified by Conditional Random Fields, the
pursuit of cliques in graphs assumes a notably intricate character. In essence, this intricacy stems from the fact that
the maximum clique problem aligns itself within Karp’s catalog of 21 NP-complete challenges [33]. Notably, in the
domain of natural language processing (NLP), the application is often streamlined to view sentences as linear chains of
words [15].

Furthermore, akin to the formula employed in conditional random fields, our methodology furnishes a formula for
factorizing the logarithm of the probability. This grants considerable flexibility in selecting the implementation of the
function S as outlined in Theorem 3. In our specific example, we have chosen a formulation that involves averaging the
embeddings of the nodes within the filter using Recurrent Neural Networks (RNNs). However, we can also investigate
more efficient methods for this purpose.

7 Conclusion and future works

In this paper, we generalized the Hammersley-Clifford theorem [5] to principal ideals on Boolean rings. This allowed
to identify relations between blackening operators and Boolean algebra. We then proposed a new method to analyse
data structure and nodes relationship. Finally, we illustrated this method on a specific tree structure. This demonstrate
the efficiency of our method when using domain assumption of our data which then allow to deduce the underlying
invariant structure.

We are confident that the framework, referred to as the "strategy" in Subsection 5.1, holds substantial promise
for unveiling new factorization structures within graph dependencies. Notably, these structures can transcend the
conventional neighborhood relationships relied upon in the Hammersley-Clifford theorem. To provide greater clarity,
our focus lies on non-symmetric relationships. This distinction becomes particularly relevant in scenarios where
symmetric dependency relationships govern graph nodes. In such instances, a transformative approach can be employed
to represent the dependency relationship as edges in a new graph, effectively aligning it with the principles underlying
the classical Hammersley-Clifford theorem.

In future work, we will delve into the full utilization of this framework, aiming to harness sparsity techniques and
Boolean logic gates to learn and leverage the invariant structure.

A Appendix

A.1 Equivalence between Boolean algebras and Boolean rings

In this Section, we introduce more precisely the notion of Boolean algebra, a mathematical structure that is isomorphic
to Boolean rings but defined using the meet ∧ and join ∨ operators instead of the ⊕ and ⊗ operators. We use the
definition from [11] based on partially orders sets and lattices, which is equivalent to the definition based on ∨ and ∧
presented in [24] and used by [34].

To begin with, let us recall a few classical definitions. Let (O,≤) be a partially ordered set and J ⊂ O. An element
a ∈ O is an upper bound (resp. a lower bound) of J if, for all b ∈ J , we have b ≤ a (resp. a ≤ b). An upper bound
(resp. a lower bound) a ∈ O of J is said to be a least upper bound (resp. a greatest lower bound) of J if every upper
bound (resp. lower bound) c of J satisfies a ≤ c (resp. c ≤ a).

Definition 20 A partially order set L is called a lattice if every pair (x, y) ∈ L2 has a least upper bound and a greatest
lower bound, respectively denoted by x ∨ y and x ∧ y. Moreover,

14



Extending beyond Conditional Random Fields using Boolean rings of blackening operators

1. the lattice L is said to be distributive if, for all (x, y, z) ∈ L3, we have x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) and
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z);

2. the lattice is said to have a unit if there exists a unique 1 ∈ L such that x ≤ 1 for all x ∈ L;

3. the lattice is said to have a zero if there exists a unique element 0 ∈ L such that 0 ≤ x for all x ∈ L;

4. the lattice is complemented if it has a unit and a zero and if, for every x ∈ L, there is an element x′ ∈ L
(called the complement of x) such that x ∧ x′ = 0 and x ∨ x′ = 1.

Definition 21 A distributive and complemented lattice is called a Boolean algebra.

With the notations of Definition 20, we can identify a Boolean algebra by a quintuple:

(L,∨,∧, 0,1).

The following proposition (whose proof can be found in [34]) makes a link between Boolean rings and Boolean
algebras.

Proposition 3 Let B be a Boolean algebra equipped with the operators ∨ and ∧. Then B can be converted into a
Boolean ring with respect to the addition ⊕ and the multiplication ⊗ defined by

a⊕ b = (a ∧ b′) ∨ (a′ ∧ b) and a⊗ b = a ∧ b.
Conversely, a Boolean ring with partial order defined by Definition 1 Section 3 is a Boolean algebra and we have

a ∨ b = a⊕ b⊕ a⊗ b and a ∧ b = a⊗ b.

Hence, one can consider the three operations ⊕, ∧ ( equivalent to ⊗) and ∨ as three operations operating on a Boolean
ring.

A.2 Proof of Lemma 2

Proof 3 (Proof of Lemma 2) Let W , X , Y be three subsets of Z, let F be a function of F and χ be a coloration.

• Complementarity.

We will first prove that 1−BX is a solution of Equation 6. We have indeed

BX ∧ (1−BX) = BX −BX ∧BX

= BX −BX

= 0

and
BX ∨ (1−BX) = BX + (1−BX)−BX ∧ (1−BX)

= BX + (1−BX)− 0

= 1.

Let us show that it is the unique solution of Equation 6.

Let B be a solution of Equation 6. Then, we have

BX ∧B = 0 and BX ∨B = BX +B −BX ∧B = 1.

By inserting the first equation into the second, we obtain the system

BX ∧B = 0 and BX +B = 1.

Therefore B = 1−BX .

Let us prove the two De Morgan’s laws. We have

¬(BX ∨BY ) = 1−BX ∨BY

= 1− (BX +BY −BX ∧BY )

= (1−BX)−BY ∧ (1−BX)

= (1−BX) ∧ (1−BY )

= ¬BX ∧ ¬BY
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and
¬(BX ∧BY ) = 1−BX ∧BY

= 1+ (1− 1) + (BX −BX) + (BY −BY )−BX ∧BY

= (1−BX) + (1−BY )− (1−BX −BY +BX ∧BY )

= (1−BX) + (1−BY )− (1−BX) ∧ (1−BY )

= ¬BX ∨ ¬BY .

• Commutativity

– We first prove the commutativity of the operator ∧:
(BW ∧BX)F (χ) = BWF (χX) = F (χX∪W )

= BXF (χW ) = (BX ∧BW )F (χ)

and
BW ∧ ¬BX = BW ∧ (1−BX) = BW −BW ∧BX

= BW −BX ∧BW = (¬BX ∧BW ).

– We now prove the commutativity of the operator ∨:

BW ∨BX = BW +BX −BW ∧BX = BX +BW −BW ∧BX

= BX +BW −BX ∧BW = BX ∨BW

and
BW ∨ ¬BX = BW + ¬BX −BW ∧ ¬BX = ¬BX +BW −BW ∧ ¬BX

= ¬BX +BW − ¬BX ∧BW = ¬BX ∨BW .

• Associativity

– We first prove the associativity of the operator ∧:
((BW ∧BX) ∧BY )F (χ) = (BW ∧BX)F (χY ) = F (χW∪X∪Y )

= BW ∧ F (χX∪Y ) = BW ∧ (BX ∧BY ) ◦ F (χ).
– We now prove the associativity of the operator ∨:

(BW ∨BX) ∨BY = (BW ∨BX) +BY − (BW ∨BX) ∧BY

= (BW +BX −BW∪X) +BY − (BW +BX −BW∪X) ∧BY

= BW +BX +BY −BW∪X −BW∪Y −BX∪Y +BW∪X∪Y

= (BX +BY −BX∪Y ) +BW −BW ∧ (BX +BY −BX∪Y )

= BW ∨ (BX ∨BY ).

• Distributivity

– We prove the distributivity the ∧ over ∨:
BW ∧ (BX ∨BY ) = BW ∧ (BX +BY −BX∪Y )

= BW ∧BX +BW ∧BY −BW∪X∪Y

= BW ∧BX +BW ∧BY −BW∪X ∧BW∪Y

= (BW ∧BX) ∨ (BW ∧BY ).

A.3 Proof of Lemma 3

Proof 4 (Proof of Lemma 3) 1. Let P be a polynomial operator. By Lemma 2,
¬P = ¬( ∨

1≤a≤l
MXa,Ya

)

= ∧
1≤a≤l

(¬MXa,Ya)

= ∧
1≤a≤l

(¬( ∧
1≤i≤n

BXa,i
∧

1≤j≤m
(¬BYa,j

)))

= ∧
1≤a≤l

( ∨
1≤i≤n

(¬BXa,i
) ∨
1≤j≤m

BYa,j
).
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This formulation can be rewritten as a sum of products because of the distributivity of ∧ over ∨. Thus, ¬P is a
polynomial operator.

The stability by ∨ is obvious and the stability by ∧ comes from the distributivity of ∧ over ∨.

2. The fact that the polynomial operators commute comes again from the distributivity of ∧ over ∨ and the fact
that pure blackening operators commute.

3. Let P and Q be two elements of P which are projectors. Since P and Q commute, we have

(P ∧Q)2 = (P ∧Q) ∧ (P ∧Q) = (P ∧ P ) ∧ (Q ∧Q) = P ∧Q,

(P ∨Q)2 = (P ∨Q) ∧ (P ∨Q)

= (P +Q− P ∧Q) ∧ (P +Q− P ∧Q)

= (P 2 + P ∧Q− P ∧Q) + (P ∧Q+Q2 − P ∧Q)− (P ∧Q)2

= P +Q− P ∧Q = P ∨Q,

(¬P )2 = (1− P ) ∧ (1− P ),= (1− P )− P + P 2 = 1− P = ¬P.

Now we notice that pure blackening operators are projectors. Hence, by direct induction, monomial blackening
operators are projectors, then polynomial blackening operator are also projectors.

A.4 Proof of Lemma 4

Proof 5 (Proof of Lemma 4) Let P be an element of P , by Item 3 of Lemma 3,

P ∧ P = P.

Thus, P ≤P P and ≤P is reflexive.

Let P and Q be two elements of P such that P ≤P Q and Q ≤P P . Then, we have

P ∧Q = P and Q ∧ P = Q.

Item 2 of Lemma 3 implies that P = Q. Therefore ≤P is anti-symmetric.

Let P , Q and R be three elements of P such that P ≤P Q and Q ≤P R. Then,

P ∧R = P ∧ (Q ∧R) = (P ∧Q) ∧R = Q ∧R = R.

This proves that P ≤P R and that ≤P is transitive.

We have proved that ≤P is a partial order. We will now prove that P ∨Q is the greatest lower bound of the set {P,Q}.
Let P , Q be two elements of P , we have

(P ∨Q) ∧ P = P ∧ P + P ∧Q− P ∧Q ∧ P = P

and
(P ∨Q) ∧Q = P ∧Q+Q ∧Q− P ∧Q ∧Q = Q.

Thus P ∨Q ≤P P and P ∨Q ≤P Q. This means that P ∨Q is a lower bound of the set {P,Q}.

Let R such that R ≤P P and R ≤P Q. Then, we have

R ∧ (P ∨Q) = (R ∧ P ) + (R ∧Q)− (R ∧ P ∧Q) = P +Q− P ∧Q = P ∨Q.

Thus, R ≤P (P ∨Q) and P ∨Q is the greatest lower bound of the set {P,Q}. We will now prove that P ∧Q is the
least upper bound of the set {P,Q}.

Let P , Q and R be three elements of P such that P ≤P R and Q ≤P R. We have

(P ∧Q) ∧ P = P ∧Q and (P ∧Q) ∧Q = P ∧Q.
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Thus, P ∧Q is an upper bound of the set {P,Q}.

Then, we have
(P ∧Q) ∧R = P ∧ (Q ∧R) = P ∧R = R.

Thus (P ∧Q) ≤P R and P ∧Q is the least upper bound of the set {P,Q}.

Finally, the fact that ¬ is the complementary operator is direct by definition of ¬ and the fact that ∨ and ∧ are the least
upper bound and the greatest lower bound.

A.5 Proof of Proposition 1

Proof 6 (Proof of Proposition 1) As a straightforward consequence of Lemma 2, the lattice (P,≤) is distributive and
every element has a unique complement.

Let P be an operator on F . Then,

(PBZ)F (χ) = PF (χZ) = 0

(PB∅)F (χ) = PF (χ).

Thus, BZ (resp. B∅)is the neutral element for ∨ (resp. ∧) on the set of the operators on F . They are in particular the
neutral elements of (P,≤).

We have proved that (P,≤) is complemented. It is a Boolean algebra, which concludes the proof of Proposition 1.

A.6 Proof of Corollary 1

Proof 7 (Proof of Corollary 1) In order to simplify the notation, we introduce Γ as:

Γ =

( ⋂
k1∈K

I(ak1)
⋂

k2∈J\K

I(bk2)
⋂

k3∈J\K

I(a′k3
)

)

In order that Γ ̸= {0}, every sub-product of ideals composing Γ must be different from the empty set. Thus, we can
deduce some necessary conditions by extracting some interesting sub-products.

1.
⋂

k1∈K I(ak1
) ̸= {0} and

⋂
k2∈J\K I(bk2

) ̸= {0}

2. ∀k3 ∈ J \K, I(a′k3
) ∩
⋂

k2∈J\K I(bk2
) ̸= {0}

3. ∀k3 ∈ J \K, I(a′k3
) ∩
⋂

k1∈K I(ak1
) ̸= {0}

4. ∀k1 ∈ K, ∀(k2) ∈ J \K, I(ak1)I(bk2) ̸= {0}

5. ∀(k3, k′3) ∈ (J \K)2, I(a′k3
) ∩ I(a′k′

3
) ̸= {0}

Using the property of Lemma 1 and replacing ai = BXi
, bi = BYi

and {0} = I(BZ). The system of necessary
conditions in order that Γ is not the empty set can be reformulated as:

1. B⋃
k∈K Xk

̸= BZ and B⋃
j∈(J\K) Yj

̸= BZ .

2. ∀j ∈ (J \K), Xj ̸⊂
⋃

j′∈(J\K) Yj′ .

3. ∀j ∈ J \K, ∀k ⊂ K, Xj ̸⊂ Xk.

4. ∀j ∈ J \K, ∀k ⊂ K, BXk
∩BYj ̸= BZ .

5. ∀(j, j′) ∈ (J \K)2, (1−BXj )(1−BXj′ ) ̸= 0.

which yields the result.
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A.7 Proof of Lemma 5

Proof 8 (Proof of Lemma 5) We can notice that I(β) has the same form as the ideal studied in Corollary 1 with
∀i ∈ J,Xi = zi and Yi = Z\(zi ∪ ∂zi). The system of necessary conditions in order that Γ is not null can be
reformulated as:

1.
⋃

k∈K zk ̸= Z and
⋃

j∈(J\K) Z\(zi ∪ ∂zi) ̸= Z. i.e.
⋂

j∈(J\K)(zi ∪ ∂zi) ̸= ∅

2. ∀j ∈ (J \K), Xj ̸⊂
⋃

j′∈(J\K) Yj′ .

3. ∀k1 ∈ K, ∀k3 ∈ J \K, {zk3} ̸⊂ {zk1} i.e. zk3 ̸= zk1 ,

4. ∀k1 ∈ K, ∀k2 ∈ J \K, zk1
∪ Z\(zk2

∪ ∂zk2
) ̸= Z, i.e. (zk2

∪ ∂zk2
) ̸= zk1

,

5. ∀(k2, k3) ∈ J \K, zk3
̸⊂ Z\(zk2

∪ ∂zk2
) i.e. zk3

⊂ zk2
∪ ∂zk2

.

The condition 1 is directly satisfied if K does not contain all the nodes and their exist some nodes which are not
neighbour of nodes in Z\K.

The condition 3 is always verified because K ∩ (J\K) = ∅.

The condition 5 implies that every element in J\K are all neighbours two by two. Which means that J\K is a clique.
Thus, J\K is a clique is a necessary condition in order that the element is not null.

We now suppose that, J\K is a clique. Then, the condition 2 and 5 are verified.

Thus, we can reduce the formula of I(β) to the sum over the cliques of the graph:

I(β) =
∑

X∈L(Z)

I(BZ\X) = I(
∑

X∈L(Z)

BZ\X).

A.8 Proof of Lemma 6

Proof 9 (Proof of Lemma 6) First, we can notice that when we are predicting χX , blackening other nodes than X
have no effect. Thus, we have the equality

∀X ⊂ Z,∀Y such that X ∧ Y = ∅, P(χX
Y ) = P(χX). (20)

Let X ⊂ Z. By using the Markovian assumption, we get

QZ = log(P(χZ)) = log(P(χX , χZ\X))

= log(P(χZ\X)P(χX |χZ\X)) = log(P(χZ\X)P(χX |χ∂X))

= log(P(χZ\X)P(χX , χ∂X)/P(χ∂X)) = log(P(χZ\X)) + log(P(χX∪∂X))− log(P(χ∂X))

= QZ\X +QX∪∂X −Q∂X .

(21)

Let Y be another subset of Z. Applying Equation 20 to Equation 21 yields

BYQZ = BYQZ\X +BYQX∪∂X −BYQ∂X ,

which is equivalent to

P(χY )

P(χX∪∂X)
Y )

=
P(χZ\X

Y )

P(χ∂X
Y )

.

Let us now prove that
QX∪∂X −BXQX∪∂X = BZ\∂XQZ −BZ\(X∪∂X)QZ . (22)

To this aim, we denote

S =
P(χX∪∂X)

P(χX∪∂X
X )

−
P(χZ\(X∪∂X))

P(χZ\∂X)
.

From Equation 20 we get
P(χX∪∂X) = P(χX∪∂X

Z\(X∪∂X))
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and
P(χX∪∂X

X ) = P(χX∪∂X
Z\∂X ),

which leads to

S =
P(χX∪∂X

Z\(X∪∂X))

P(χX∪∂X
Z\∂X )

−
P(χZ\(X∪∂X))

P(χZ\∂X)
.

Then,

S
P(χZ\∂X)

P(χX∪∂X
Z\(X∪∂X))

=
P(χZ\∂X)

P(χX∪∂X
Z\∂X )

−
P(χZ\(X∪∂X))

P(χX∪∂X
Z\(X∪∂X))

.

Using now Equation 21, with Y = Z\∂X

P(χZ\∂X)

P(χX∪∂X
Z\∂X )

=
P(χZ\X

Z\∂X)

P(χ∂X
Z\∂X)

=
P(χZ\X

Z\(X∪∂X))

P(χ∂X
Z\(X∪∂X))

.

Using again Equation 21, with Y = Z\(X ∪ ∂X), gives

P(χZ\(X∪∂X))

P(χX∪∂X
Z\(X∪∂X))

=
P(χZ\X

Z\(X∪∂X))

P(χ∂X
Z\(X∪∂X))

.

Consequently, we have

S
P(χZ\∂X)

P(χX∪∂X
Z\(X∪∂X))

= 0,

and S = 0 which proves Equation 22.

Applying now BX to Equation 21,
BXQZ = BXQZ\X +BXQX∪∂X −BXQ∂X

= BX log(P(χZ\X)) +BXQX∪∂X −BX log(P(χ∂X))

= log(P(χZ\X
X )) +BXQX∪∂X − log(P(χ∂X

X ))

= log(P(χZ\X)) +BXQX∪∂X − log(P(χ∂X))

= QZ\X +BXQX∪∂X −Q∂X .

(23)

Now substracting Equation 21 to Equation 23, and using Equation 20
QZ(1−BX) = BXQX∪∂X −QX∪∂X

= BZ\(X∪∂X)QZ −BZ\∂XQZ .

This leads to

QZ = BXQZ +BZ\(X∪∂X)QZ −BZ\∂XQZ = βXQZ ,

which end the proof.

A.9 Proof of Proposition 2

We first prove a useful lemma.

Lemma 8 Let P ∈ P , then for all F ∈ F , we have

ψF (P ) = True if, and only if, 1 ∈ I(P ). (24)

Proof 10 (Proof of Lemma 8) Let P ∈ P , the notation 1 ∈ I(P ) means that

P ◦ 1 = 1.

This equality has to be understood in the sense of operator on F , this is thus equivalent to

∀F ∈ F , (P ◦ 1)F = 1F.

Thus
PF = F which is equivalent to ψF (P ) = True.

This ends the proof.
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Proof 11 (Proof of Proposition 2) We first prove Item 1 and Item 2. For all F ∈ F , we have B∅ ◦ F = F and
BZ ◦ F = 0, so clearly ψF (B∅) = True and ψF (BZ) = False.

Proof of Item 3 Suppose that ψF (P ) = True then,

(P ∨Q)F = PF +QF − (P ◦Q)F

= F +QF −QF

= F.

As it is the same if ψF (Q) = True, we have

ψF (P ) ∪ ψF (Q) = True implies that ψF (P ∨Q) = True.

Suppose that
ψF (P ∨Q) = True.

By using Lemma 8, we get
1 ∈ I(P ∨Q) = I(P ) ∪ I(Q).

Then it means, in terms of ideals,
1 ∈ I(P ) or 1 ∈ I(Q).

Therefore, again by Lemma 8,
ψF (P ) = True or ψF (Q) = True,

which leads to
ψF (P ∨Q) = True if and only if ψF (P ) ∪ ψF (Q) = True,

which ends the proof of Item 3.

Proof of Item 4. Suppose that
ψF (P ) ∩ ψF (Q) = True.

Then
ψF (P ) = True and ψF (Q) = True

and
(P ∧Q)F = P (QF ) = PF = F.

We have proved that
ψF (P ) ∩ ψF (Q) = True implies that ψF (P ∧Q) = True,

Suppose now that
ψF (P ∧Q) = True,

then by using Lemma 8,
1 ∈ I(P ∧Q) = I(P ) ∩ I(Q).

Therefore,
1 ∈ I(P ) and 1 ∈ I(Q)

which means that
ψF (P ) = True and ψF (Q) = True.

We have proved that

ψF (P ∧Q) = True if and only if ψF (P ) ∩ ψF (Q) = True,

which ends the proof of Item 4.

Item 5. Suppose that
ψF (¬P ) = True,

then by using Lemma 8 on ¬P ,
(1− P )F = F, PF = 0.

Thus,
ψF (P ) = False.
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Suppose that
ψF (P ) = True

then by using Lemma 8,
PF = F, (1− P )F = 0.

Finally,
ψF (¬P ) = False.

We have thus proved that
ψF (¬P ) = False if and only if ψF (P ) = True,

which is equivalent to
ψF (¬P ) = ¬ψF (P ).

A.10 Proof of Step 6.2

Let T be an arboresence and χ be a coloration on the arboresence T . Let ω be a random coloring of Z which follows
the filter invariant properties. Suppose that P(ω = χZ) ̸= 0. Let us state a useful lemma, whose proof is deferred to the
end of this section.

Lemma 9 Let χ be a coloration of the set of nodes Z and suppose that ω follows the filter invariant properties. We
introduce the function

∀X ⊂ Z, QX = log(P(χX)).

Then, we have
∀X ⊂ Z, QZ = βXQZ ,

where β is defined in Section 4 Step 2.

Proof 12 (Proof of Step 6.2) Let X ⊂ Z, using the filter invariant properties of ω, we get

QZ = log(P (χZ)) = log(P (χX∪D(X), χZ\{X∪D(X)}))

= log(P (χZ\{X∪D(X)})P (χX∪D(X)|χZ\X∪D(X)))

= log(P (χZ\{X∪D(X)})P (χX∪D(X)|χSib(X)∪A(X)))

= log(P (χZ\{X∪D(X)})P (χX∪D(X), χSib(X)∪A(X))/P (χSib(X)∪A(X)))

= log(P (χZ\{X∪D(X)})) + log(P (χX∪Sib(X)∪D(X)∪A(X)))− log(P (χSib(X)∪P (X)))

= QZ\{X∪D(X)} +QX∪D(X)∪Sib(X)∪A(X) −QSib(X)∪A(X).

(25)

We can now use Lemma 9 to get
∀zi ∈ Z, βzi log(P(χ)) = log(P(χ)).

Therefore,

β log(P(χ)) =

(∏
zi∈Z

βzi

)
log(P(χ)) =

 ∏
zi∈Z\{z1}

βzi

 (βz1 log(P(χ)))

=

 ∏
zi∈Z\{z1}

βzi

 log(P(χ)) = log(P(χ)).

Thus, β log(P(χ)) = log(P(χ)).
By Step 6.2, there exists a set of projector EZ\X such that EZ\X = BZ\XEZ\X and

β =
∑

X∈F (χ)∪{∅}

EZ\X =
∑

X∈F (χ)∪{∅}

BZ\XEZ\X ,

so

log(P(χ)) = β log(P(χ)) =
∑

X∈F (χ)∪{∅}

BZ\XEZ\X log(P(χ))

=
∑

X∈F (χ)∪{∅}

EZ\X log(P(χZ\X)).
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Finally, as P(ω = χZ) ̸= 0, with the notation S(χZ\X) = EZ\X log(P(χZ\X)), we have the final result:

P(χ) = P(χZ) exp

 ∑
X∈F (χ)

S(χZ\X)

 .

Proof 13 (Proof of Lemma 9) Let Y be another subset of Z. Applying Equation 20 to Equation 25 yields

BYQZ = BYQZ\{X∪D(X)} +BYQX∪D(X)∪Sib(X)∪A(X) −BYQSib(X)∪A(X),

which is equivalent to

P(χY )

P(χX∪Sib(X)∪D(X)∪A(X))
Y )

=
P(χZ\(X∪D(X))

Y )

P(χSib(X)∪A(X)
Y )

.

By applying the same proof as in Lemma 6 for the proof of Equation 22, where we replace ∂X by Sib(X) ∪A(X) and
X by X ∪D(X), we have

BX∪D(X)QX∪Sib(X)∪D(X)∪A(X) −QX∪Sib(X)∪D(X)∪A(X)

= BZ\(X∪Sib(X)∪D(X)∪A(X))QZ −BZ\(Sib(X)∪A(X))QZ .

This equation yields

QX∪Sib(X) −BXQX∪Sib(X) = BZ\Sib(X)QZ −BZ\(X∪Sib(X))QZ . (26)

By applying now BX to Equation 25, we get

BX∪D(X)QZ = BX∪D(X)QZ\(X∪D(X)) +BX∪D(X)QX∪Sib(X) −BX∪D(X)QSib(X)

= BX∪D(X) log(P(χZ\(X∪D(X)))) +BX∪D(X)QX∪Sib(X) −BX∪D(X) log(P(χSib(X)))

= log(P(χZ\(X∪D(X))
X∪D(X) )) +BX∪D(X)QX∪Sib(X) − log(P(χSib(X)

X ))

= log(P(χZ\(X∪D(X)))) +BX∪D(X)QX∪Sib(X) − log(P(χSib(X)))

= QZ\(X∪D(X)) +BX∪D(X)QX∪Sib(X) −QSib(X).

(27)

Now, substracting Equation 25 to Equation 27, and using Equation 20,

QZ(1−BX) = BX∪D(X)QX∪Sib(X)∪D(X)∪A(X) −QX∪Sib(X)∪D(X)∪A(X)

= BZ\(X∪Sib(X)∪D(X)∪A(X))QZ −BZ\(Sib(X)∪A(X))QZ .

This leads to

QZ = BX∪Sib(X)QZ +BZ\(X∪Sib(X)∪A(X)∪D(X))QZ −BZ\(Sib(X)∪A(X))QZ = βXQZ ,

which ends the proof of Lemma 9.

A.11 Proof of Lemma 7

Proof 14 (Proof of Lemma 7) According to Corollary 1 and the intermediate result from Proof A.7, an element of the
sum is zero if one of the five following conditions is satisfied.

1.
⋃

k∈K zk ̸= Z and
⋃

j∈(J\K) Z\(zi ∪ ∂zi) ̸= Z. i.e.
⋂

j∈(J\K)(zi ∪ ∂zi) ̸= ∅

2. ∀j ∈ (J \K), Xj ̸⊂
⋃

j′∈(J\K) Yj′ .

3. ∀k1 ∈ K, ∀k3 ∈ J \K, {zk3
} ̸⊂ {zk1

} i.e. zk3
̸= zk1

,

4. ∀k1 ∈ K, ∀k2 ∈ J \K, zk1 ∪ Z\(zk2 ∪ ∂zk2) ̸= Z, i.e. (zk2 ∪ ∂zk2) ̸= zk1 ,

5. ∀(k2, k3) ∈ J \K, zk3
̸⊂ Z\(zk2

∪ ∂zk2
) i.e. zk3

⊂ zk2
∪ ∂zk2

.

1. ∀(k, j) ∈ (Z \ I)2,

zj ∪D(zj) ̸⊂ Z\{zk ∪ Sib(zk) ∪A(zk) ∪D(zk)}
i.e. {zj ∪D(zj)} ∩ {zk ∪ Sib(zk) ∪A(zk) ∪D(zk)} ≠ ∅.
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2. ∀j ∈ Z \ I, ∀i ∈ I ,

zj ∪D(zj) ̸⊂ zi ∪D(zi).

3. ∀k ∈ Z \ I , ∀j ∈ I ,

{zj ∪D(zj)} ∪ Z\{zk ∪ Sib(zk) ∪A(zk) ∪D(zk)} ≠ Z

i.e. {zk ∪ Sib(zk) ∪A(zk) ∪D(zk)} ̸⊂ {zj ∪D(zj)}.

4. ∀(k, k′) ∈ (Z \ I)2,

Z\{zk ∪ Sib(zk) ∪A(zk) ∪D(zj)} ∪ Z\{z′k ∪ Sib(z′k) ∪A(z′k) ∪D(z′k)} ≠ Z

i.e. (zk ∪ Sib(zk) ∪A(zk) ∪D(zk)) ∩ (z′k ∪ Sib(z′k) ∪A(z′k) ∪D(z′k)) ̸= ∅.

5. ∀(i, i′) ∈ I2,

zi ∪D(zi) ∪ z′i ∪D(z′i) ̸= Z.

6. ∀(j, j′) ∈ (Z \ I)2,

(1−Bzi∪D(zi))(1−Bz′
j∪D(z′

j)
) ̸= 0.

Condition 1 implies that every node in Z\I has a relation among each other node’s neighbour or descendant or
ancestor.

Condition 2 implies that the elements of Z\I are not the descendant of the elements of I .

Condition 3 implies the element of I are not the ancestor of the element of Z\I .

Condition 4 implies that every element of Z\I is parent, descendant or neighbour of one another of every other element
of Z\I .

Condition 5 is satisfied when Z\I ̸= ∅ and at least one element of Z\I is not a descendant of any element of I .

These conditions imply the following fact. Assume that the set Z\I is not totally black. Then, necessarily, Z\I is
composed of a set of sibling leaves Sib in addition to their ascendants D(Sib). In other words, it is a filter.
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