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(1) MIP, Laboratoire CNRS (UMR 5640), Université Paul Sabatier,
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Abstract

By following a strategy introduced in previous works, quantum extensions
of the classical electron-phonon scattering operator are deduced from first prin-
ciples. These quantum collision operators satisfy a quantum H-theorem and
relax towards quantum equilibria. Then, under an assumption of dominant
elastic interactions, a hierarchy of quantum Spherical Harmonic Expansion
(SHE) models is derived by a diffusive approximation of collisional Wigner
equations. These models are proven entropic and their expansions into powers
of the reduced Planck constant ℏ are calculated, leading to ℏ

2 corrections for
the classical SHE model.

1 Introduction

The transport of charged particles in electronic devices is generally described by
kinetic models such as Boltzmann-like equations or macroscopic models of hydrody-
namic or diffusion type. Due to the ongoing miniaturization of these devices, reaching
the nanometric scale, the reliability of these classical models becomes doubtful as
quantum effects become important. Since, at an intermediate scale, collision phe-
nomena remain significant, one of the most challenging areas of investigation in semi-
conductor modelling deals with the setting-up of quantum transport models which
take into accoung scattering effects. Though many works are concerned with the
numerical simulation of ballistic quantum transport models for semiconductors (see
e.g. [27, 38, 45, 26, 16, 47]), a quantum theory of collisions is still under development
(among other works on the quantum theory of scattering, see e.g. [3, 13, 25, 39, 48]
and, more recently, [4, 6, 28]). Furthermore, several attempts were made to adapt
existing classical macroscopic models to quantum mechanics [1, 2, 31, 32, 33, 34]
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but, generally, the link between the so-obtained models and a microscopic quantum
description of the particle transport is to a large extent phenomenological.

Recently, a strategy for deriving quantum macroscopic models was introduced
in [22, 23]. It relies on the notion of a quantum local equilibrium (called “quantum
Maxwellian”), defined through a Gibbs principle as the minimizer of the quantum en-
tropy under local moment constraints. This approach enabled to write prototypes of
collision operators which decrease the quantum entropy and relax towards the quan-
tum local equilibria. By introducing such collision operators in the Wigner equation
and by performing formally a hydrodynamic (resp. diffusive) limit, quantum hydro-
dynamic (resp. quantum diffusive) models were derived in [22] and [20] (these two
papers are reviewed in [21]). As a by-product of the method, these quantum macro-
scopic models display some interesting physical properties, such as the preservation
of the positivity of the density or an entropy dissipation. The numerical resolution
of the simplest of these models, the quantum drift-diffusion model, is investigated in
[29, 30].

The small size of current semiconductor devices raises another problem. In some
regimes, the relevant time and length scales are too small for the cloud of electrons
to reach a thermodynamical equilibrium. Therefore, an accurate description of these
devices cannot be achieved by models which, like drift-diffusion or hydrodynamic
models, rely on the assumption that the system has been driven to an equilibrium
with a given profile (of Maxwellian or of Fermi-Dirac type). Intermediate models
have been recently introduced, in a classical setting, to fill the gap between precise
but numerically expensive models (kinetic models for instance) and numerically af-
fordable but less accurate models such as drift-diffusion models: among others are
the Spherical Harmonics Expansion (SHE) models (see [7, 15] for a mathematical
description and references). These models are diffusion models in the position-energy
space. They have been applied to semiconductor physics ([35, 11, 12, 8, 9]), neutron-
ics ([36]), gas discharge ([49]) and plasma physics ([24]). Numerical computations
have established the relevance of the classical SHE models ([18, 10]). These models
are also refered to as Fokker-Planck models. They consist of a mass balance equation
(the continuity equation) for the energy distribution function, and of a constitutive
law for the current of particles of given energy. The former governs the transport
of the density and the latter describes the effects of the diffusion due to the particle
scattering.

The goal of this paper is twofold. On the one hand, following the strategy,
described above, which leads to deriving quantum versions of the hydrodynamic
(HD), energy-transport (ET) and drift-diffusion (DD) models, we propose quantum
SHE models. These models are expected to be better adapted than classical SHE
models to situations where quantum phenomena are predominant. Moreover, as in
the classical case where SHE models appear as intermediate models between kinetic
and macroscopic equations, quantum SHE models fit systems far from Maxwellian-
like equilibria better than quantum HD, ET and DD models.

The derivation of quantum SHE models by a diffusion approximation procedure
makes the introduction of quantum collision operators at the kinetic level neces-
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sary: this constitutes the second goal of this work. A quantum collision operator
is built following ideas first introduced in [22, 23, 20] and generalizing the classical
electron-phonon scattering operator [41]. Then, in the regime of dominant elastic
scattering, several other operators are proposed. All these operators are consistent
with the elementary properties which are sought to describe collisions with phonons
(conservations, equilibrium states, quantum entropy dissipation).

The paper is organized as follows. Section 2 recalls some well-known results about
the derivation of classical SHE models and emphasizes the importance of the entropy
dissipation of the collision operator to obtain an entropic structure for the macro-
scopic model. Classical features of the linearized electron-phonon collision operator
are also recalled. Section 3 is a first step towards the derivation of a quantum SHE
model: we consider the Wigner equation equipped with a classical collision opera-
tor and perform the derivation in this setting, which leads to the Quasi-Quantum
SHE model. This model does not account for quantum diffusion. Quantum collision
operators are introduced in Section 4 following a heuristic analogy: these operators
must fulfill properties analogue to those satisfied by the classical operators given in
Section 2. For this sake, a quantum entropy is given and quantum thermodynami-
cal equilibria are defined as minimizers of this entropy, allowing the introduction of
quantum relaxation operators. Then the derivation of a fully quantum SHE model
can be performed and this is achieved in Section 5.

The Quantum SHE and Quasi-Quantum SHE models involve pseudo-differential
operators and display a non-local character. In order to obtain models easier to
handle, a formal expansion of these equations with respect to the reduced Planck
constant ℏ are given in Sections 3 and 5. As it was done in [20] for the quantum
energy-transport and the quantum drift-diffusion models, by keeping only the terms
up to second order in ℏ in this expansion, we derive quantum correction terms for
the classical SHE model.

2 Classical modelling of Electron-Phonon Scatter-

ing in semiconductor devices: a short review

In this section, we review some well-known features concerning electron-phonon scat-
tering in classical kinetic models. Indeed, having this review in mind will help un-
derstand our methodology for establishing quantum collision operators and deriving
various quantum SHE models.

2.1 The Boltzmann equation

The evolution of electrons in semiconductor devices can be described at a microscopic
level through classical kinetic equations of Boltzmann type as long as quantum effects
are neglected. To that purpose, one introduces the distribution function f(t, x, p) of
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the electrons. Then f is given as the solution of the initial value problem
{

∂tf + p · ∇xf −∇xV · ∇pf = C(f), x ∈ R
3, p ∈ R

3, t > 0

f(0, x, p) = fI(x, p)
(2.1)

where V = V (x) is a given potential and fI an initial condition. The collision oper-
ator C models the interactions of the electrons with the medium. All the quantities
that will be considered in the sequel are dimensioneless. The equation is adimen-
sioned and we set the temperature equal to 1 and the electron mass and elementary
charge equal to 1 and −1 respectively. We will note

L = p · ∇x −∇xV · ∇p

the classical transport (Liouville) operator. The classical relative entropy usually
associated to this kind of equation is

HC(f) =

∫

R6

f

(
ln f − 1 +

|p|2
2

+ V (x)

)
dxdp =

∫

R6

f

(
ln

f

M − 1

)
dxdp

where the global Maxwellian M is defined by

M(x, p) = exp

(
−|p|2

2
− V (x)

)
. (2.2)

When the context is clear, we will note as well M(x, ε) = exp(−ε − V (x)), where
ε denotes the energy variable (ε ≥ 0). The following lemma is a classical result on
HC . Its proof is straightforward.

Lemma 2.1 Let C in (2.1) be such that, for any positive measurable function g,
this inequality holds:

−
∫

C(g) ln
( g

M
)

dxdp ≥ 0. (2.3)

Then, if f is a positive solution of Eq. (2.1), the associated entropy satisfies:

dHC(f)

dt
≤ 0. (2.4)

According to this lemma, the study of the entropic structure of equations of type
(2.1) reduces to proving an inequality on the collision operator C. In this section,
several collision operators are introduced in order to model the scattering of electrons
in semiconductors. The classical electron-phonon collision operator is introduced
and some of its properties are recalled. The limit of a vanishing phonon energy is
performed and yields an elastic collision operator. Then, the derivation of a classical
SHE model is set out (following [7, 15]) and its entropic structure is emphasized.

Before achieving these tasks, we introduce the spherical coordinates in momentum
space: ω = p/|p| ∈ S

2, ε = |p|2/2 > 0, where S
2 denotes the unit sphere in R

3. For
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any function f , we note equally f(p) = f(ε, ω) and, when the context is unambiguous,
f = f(p) and f ′ = f(p′). The following formula holds for any integrable function f

∫

R3

f(p)dp =

∫

(0,∞)×S2

f(ε, ω)
√

2ε dεdω

and we define
∫

R3

f(p′)δ
(
|p′|2/2 − ε

)
dp′ =

∫

(0,∞)×S2

f(ε′, ω′)δ(ε′− ε)
√

2ε′dε′dω :=
√

2ε

∫

S2

f(ε, ω′)dω′.

Let L2
x,p = L2(R6) denote the space of square integrable functions on the phase

space R
6. The closed subspace of energy dependent functions will be of considerable

interest in the remainder of the paper and is denoted by

E =
{
f ∈ L2

x,p : f(x, p) = f(x, |p|) a.e.
}

and the space orthogonal to E in L2
x,p is denoted by E⊥. The projectors on E and on

E⊥ are respectively denoted by P and P⊥ and, for any φ in L2
x,p, they are given by

P(φ)(ε) =
1

N(ε)

∫

R3

φ(ε′, ω′)δ(ε′ − ε)dp′, P⊥φ = (Id − P)φ

where Id denotes the identity operator on L2
x,p and N(ε), the density of state, is

defined by

N(ε) =

∫

R3

δ(|p′|2/2 − ε)dp′ = 4π
√

2ε,

so that the projector P can be written equivalently as

P(φ)(ε) =
1

4π

∫

S2

φ(ε, ω′)dω′.

Note that, for any f and φ, P(φf) = φP(f) and P⊥φ = 0 as soon as φ is a function
of the energy ε only. Moreover, E⊥ is spanned by functions of null angular average.

2.2 The Classical Electron-Phonon collision operator

We now focus on the expression of the collisions operator C(f). In semiconductors,
electrons undergo mainly three types of collisions against ionized impurities, acoustic
phonons and optical phonons [50]. At large enough energies, optical phonon collisions
are dominant and we shall discard the other types of collisions.

Classically (see [44] for instance), in a low density case, the electron-optical
phonon collision operator is linear and can be written, after an appropriate scal-
ing, according to

Ceϕ(f)(p) =

∫
Σ(p, p′) {[(N0 + 1)δ(ε − ε′ + β) + N0δ(ε − ε − β)] f(p′)

− [(N0 + 1)δ(ε′ − ε + β) + N0δ(ε
′ − ε − β)] f(p)} dp′
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with β the scaled phonon energy (which is a constant), Σ(p, p′) a symmetric function
of the form

Σ(p, p′) = Coptβ

{
1

|p−p′|2
(polar interactions)

1 (non polar interactions)
(2.5)

where Copt is an appropriate constant. The phonon occupation number N0 for a
lattice temperature T = 1 is given by the Bose-Einstein statistics as:

N0 =
1

eβ − 1
. (2.6)

The collision operator can also be written

Ceϕ(f) =

∫
S(p, p′) [δ(ε′ − ε − β) + δ(ε′ − ε + β)]

(
f(p′)

M(ε′)
− f(p)

M(ε)

)
dp′ (2.7)

with M = M(ε) = exp(−ε) the Maxwellian and

S(p, p′) = Σ(p, p′)N0e
−(ε+ε′)/2 eβ/2,

which is a symmetric function. The following result can be found in [41]:

Proposition 2.2 The collision operator Ceϕ defined by (2.7) satisfies the following
properties:
(i) Mass conservation:

∫
Ceϕ(f)dp = 0 for any measurable function f .

(ii) Equilibrium states: for any measurable function f(x, p), we have Ceϕ(f) = 0 if
and only if

f(x, p) = M(|p|2/2)F (x, |p|2/2)

where F is such that F (x, ε + β) = F (x, ε).
(iii) Entropy dissipation: −

∫
Ceϕ(f) ln(f/M)dp ≥ 0 for any positive integrable func-

tion f .

Typically, the electron energy in a semiconductor device is of the same order of
magnitude as the applied bias, i.e. of the order of 1 Volt. This is very large compared
with the typical optical phonon energy, which is of the order of 10−2 Volts. Therefore,
the scaled parameter β ≈ 10−2 is very small and it is meaningful to consider the
elastic limit β → 0 of the electron-phonon collision operator.

The following operator Cel can be obtained as the limit of Ceϕ as β → 0:

Cel(f)(p) = N(|p|2/2)
{
P
(
S̃(p, ·) f(·)

)
− P

(
S̃(p, ·)

)
f(p)

}
(2.8)

where

S̃(p, p′) = 2 Copt

{
1

|p−p′|2
(polar interactions),

1 (non polar interactions).
(2.9)

From now on, we drop the tildas. It is straightforward to prove that
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Proposition 2.3 The collision operator Cel defined by (2.8) satisfies the following
properties:
(i) Mass conservation:

∫
Cel(f)dp = 0 for any measurable function f .

(ii) Equilibrium states: for any function f in L2
x,p, we have Cel(f) = 0 if and only if

f(x, p) = F (x, |p|2/2)

where F lies in E .
(iii) Entropy dissipation: −

∫
Cel(f) ln(f/M)dp ≥ 0 for any positive integrable func-

tion f .

2.3 Derivation of the Classical SHE model (CSHE)

Classical SHE models (CSHE) (also referred to as Fokker-Planck models) are ob-
tained as asymptotic limits of the Boltzmann equation under the assumption of
dominant elastic scattering, i.e. when the collision operator (of the type (2.8)) is
supposed to be large, say of order 1/α where α is a measure of the collision mean-free
path in scaled units. We also need to observe the system over large periods of time,
i.e. we must rescale the time variable t → t/α in order to capture the significant
dynamics, which is of diffusion type. In this new set of units, the classical Boltzmann
equation becomes:

α∂tf
α + (p · ∇x −∇xV · ∇p) fα =

1

α
Cel(f). (2.10)

To ensure boundedness and positivity for the collision operator, we assume that

Assumption 2.4 There exist two positive constants K, K ′ such that K < S < K ′.

Under this assumption, operator Cel is an isomorphism from E⊥ onto E⊥ (see [7]
for instance). Then, Equation (2.10) has solutions according to the Hille-Yosida
theorem:

Lemma 2.5 Under regularity assumptions on the potential V and Assumption 2.4,
Eq. (2.10) with initial datum fI in D(L) :=

{
f ∈ L2

x,p : Lf ∈ L2
x,p

}
has a unique

solution fα in C1([0, T ], L2
x,p) ∩ C0([0, T ],D(L)).

We do not enter into details regarding sufficient assumptions on V since the differ-
ential operator ∇xV ·∇p will not be used in this paper, but, instead, an L2 bounded
pseudo-differential operator. The (possibly not optimal) regularity required for V in
the quantum case is stated in Assumption 3.2 below.

Proposition 2.6 summarizes some results on the derivation of the CSHE model
(see [7] and [15] for this proposition as well as for precise regularity requirements on
the potential V ):
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Proposition 2.6 Assumption 2.4 is made and V is supposed regular enough.
We consider Eq. (2.10) with initial datum fα

I such that the sequence (fα
I ) con-

verges in L2
x,p to an element Fin of E as α → 0. By Lemma 2.5, this problem has a

unique solution fα for all α > 0.
The formal limit F of fα as α → 0 is the solution of the classical SHE (CSHE)

model:

N(ε)∂tF − ∇̃ ·
(
D ∇̃F

)
= 0 (2.11)

F (0, x, ε) = Fin(x, ε)

∇̃ = ∇x −∇xV ∂ε, (2.12)

D = P
(
C−1

el (p) ⊗ p
)

=
|p|2
4π

∫

S2

C−1
el (ω) ⊗ ω dω.

More precisely, the sequence (fα)α can be rigorously proved to converge weakly in
L∞((0, T ), L2

x,p) to a limit F ∈ L∞((0, T ), E) which is a weak solution of (2.11), and
F ≥ 0. Moreover, the following expression

HCSHE(F ) =

∫
F

(
ln

F

M − 1

)
N(ε)dεdx

is a decreasing function of time.

Proof: The proof of the derivation itself can be found in [7, 15] (formal proof)
and [14], for a rigorous proof in the case of a null potential V . When the potential
does not vanish, the proof can be adapted from [19] where the diffusion is driven by
particle-wall scattering.

An interesting case is when the collision kernel is isotropic: S(p, p′) = S(|p|, |p′|).
Then, setting S(|p|, |p|)N(|p|2/2) = ν, the collision operator reads:

Cel(f) = ν (Pf − f) (2.13)

and the diffusion matrix is a scalar given by

D =
4π

3ν
(2ε)3/2. (2.14)

Remark 2.7 The Classical SHE model given by equation (2.11) is a degenerate
parabolic equation.

Remark 2.8 Note that, in the definition of this operator (2.13), the projection
term Pf can be obtained as the minimizer of the classical entropy HC(g) under the
constraint P(g − f) = 0. The definition of a quantum analogue of this relaxation
operator in section 4.2 is inspired by this remark.

8



3 Classical collision operators

and Quasi-Quantum SHE model

As a first attempt to introduce quantum phenomenology in the SHE model, the
Wigner equation can be substituted to the left hand side of the Boltzmann equation
(2.1). This is our goal in the present section. First, the Wigner-Boltzmann equa-
tion (i.e. the Wigner equation with a collisional source term) is introduced. Some
notations and properties are given and the resolution of the Cauchy problem for
this equation is recalled. Note that in this section, we will focus on the influence of
the quantum transport operator. The scattering phenomena are still modeled by a
classical collision operator. We emphasize that this approach lacks consistency, as
we use a quantum model for transport and still a classical model for collisions. In
order to remedy to this inconsistency, we introduce quantum collision operators in
section 4.

The so-called Quasi-Quantum SHE (QQSHE) model is rigorously derived from
the Wigner-Boltzmann equation in a diffusion asymptotics. As the Wigner equation,
the QQSHE model depends on the Planck constant. The expansion of this model
with respect to ℏ is investigated and a focus is made on the QQSHE2 model, that
is, the expanded model up to second order terms in ℏ. This model is of interest
since it introduces correction terms to the CSHE model and may lead to a cheap yet
accurate way to introduce quantum corrections in classical SHE models.

3.1 The Wigner-Boltzmann equation

Let us introduce the Wigner transform and its properties. All the results of this
subsection are given without proof (one can refer to [40] for instance). To any
complex number z we associate its complex conjugate z. We adopt the following
conventions for the Fourier transform F and the inverse Fourier transform F−1 (in
dimension 3)

F(f)(η) =

∫
f(p)e−ip·η/ℏdp, F−1(g)(p) =

∫
g(η)eip·η/ℏ

dη

(2πℏ)3

where ℏ is the reduced Planck constant. Let ρ denote a trace class nonnegative
hermitian operator on L2(R3) and let ρ(x, y) be its integral kernel. Then its Wigner
transform is

W [ρ](x, p) =

∫

R3

ρ
(
x − η

2
, x +

η

2

)
eiη·p/ℏdη

whereas the Weyl quantization of any symbol a(x, p) defines an operator Op(a):

Op(a)φ = (2πℏ)−3

∫

R6

a

(
x + y

2
, p

)
φ(y)eip·(x−y)/ℏdpdy.

Then Op and W are formally inverse operations to one another:

Op(W [ρ]) = ρ ; W [Op(a)] = a.
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For any trace class operator ρ, we denote by Tr ρ its trace and by ρ† its hermitian
adjoint. We summarize some classical properties of Op and W in the following
lemma. We recall that an operator K is a Hilbert-Schmidt operator if there exists
a kernel k ∈ L2

x,p such that, for any φ ∈ L2
x,p, K(φ)(y) =

∫
k(x, y)φ(y)dy. We note

K ∈ HS.

Lemma 3.1 (Properties of W and Op)
(i) The Weyl quantization Op(a) of a symbol a is a Hilbert-Schmidt operator if and
only if a is in L2

x,p. Moreover, Op is an isometry from L2
x,p onto HS.

(ii) An operator ρ is hermitian if and only if W [ρ] is real valued. The Wigner trans-
form W, defined from HS onto L2

x,p is the inverse transform to the Weyl quantization.
(iii) For two Hilbert-Schmidt operators ρ and σ, the following formula is a conse-
quence of Plancherel’s identity

Tr {ρσ†} =
1

(2πℏ)3

∫
W [ρ]W [σ]dxdp. (3.1)

(iv) Let H = −ℏ
2

2
∆ + V denote the particle Hamiltonian. Then, for any Hilbert-

Schmidt operator ρ, we formally have

i

ℏ
W [H, ρ] = (p · ∇x − θ[V ]) (W [ρ]), (3.2)

where θ[V ] denotes the pseudodifferential operator associated with the potential
V (x):

θ[V ]f = F−1

(
i
V
(
x + η

2

)
− V

(
x − η

2

)

ℏ
F(f)

)
(3.3)

=
i

(2π)3

∫

R6

V (x + ℏ

2
η) − V (x − ℏ

2
η)

ℏ
f(t, x, p′) ei(p−p′)·η dη dp′,

and [ρ, σ] = ρσ − σρ is the commutator of two operators ρ and σ.
(v) Op(|p|2) = −ℏ

2∆ and, for any symbol s depending only on x, Op(s) is the
s-multiplication operator: Op(s)ϕ : x → s(x)ϕ(x).

Now we recall the link between the Wigner and the von Neumann equations. The
density matrix ρ satisfies the von Neumann equation

iℏ∂tρ = [H, ρ] (3.4)

if and only if its Wigner transform f = W [ρ] satisfies the Wigner equation

∂tf + p · ∇xf − θ[V ]f = 0 (3.5)

as can be seen thanks to Eq. (3.2). The function f cannot be easily interpreted as
a distribution function (for instance, it is not necessarily positive), but the classical
transport equation ∂tf+(p·∇x−∇xV ·∇p)f = 0 can be obtained as the semi-classical
limit of the Wigner equation as ℏ tends to 0 (see [40]).

Lemma 3.3 gives some information on the operator θ[V ] if we assume:
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Assumption 3.2 The potential V lies in W 2,∞(R3).

Lemma 3.3 If the potential V satisfies Assumption 3.2, then
(i) θ[V ] is a bounded skew-adjoint operator from L2

x,p to L2
x,p ,

(ii) for any function f ∈ W 2,2(R3
x; L

2(R3
p)),

θ[V ](f) ∈ W 2,2(R3
x, L

2(R3
p)),

and, for f ∈ W 1,2(R3
x; L

2(R3
p)),

∇xθ[V ]f = θ[∇xV ](f) + θ[V ](∇xf),

where θ[∇xV ](f) and θ[V ](∇xf) denote respectively the two vectors of components
θ[∂xi

V ](f) and θ[V ](∂xi
f), for i = 1, 2, 3 ,

(iii) for any function f ∈ L2
x,p such that p f ∈

(
L2

x,p

)3
, p θ[V ](f) is in L2

x,p ,
(iv) for any function F ∈ E , θ[V ]F belongs to E⊥ .

Eq. (3.5) does not take collision phenomena into account. In the remainder of
section 3 it is assumed that the scattering can be modeled through a classical elastic
collision operator. Therefore, the collision operator is still Cel, as defined in (2.8).
This leads to the following Wigner-Boltzmann equation (after rescaling):

α∂tf
α + (p · ∇x − θ[V ]) fα =

1

α
Cel(f

α) (3.6)

We denote by Λ the Wigner operator of domain D(Λ) =
{
g ∈ L2

x,p : p · ∇xg ∈ L2
x,p

}

and defined by
Λ : D(Λ) → L2

x,p

g → (p · ∇x − θ[V ]) g.

Note that, since θ[V ] is skew-adjoint on L2
x,p, so is Λ on D(Λ).

Remark 3.4 It is not clear whether the Wigner-Boltzmann equation equipped with
the classical relaxation operator Cel preserves positivity. In this sense, it is not a
consistent quantum model.

For the study of the QQSHE model, we introduce the following functional spaces:

L2
Nk =

{
h (x, ε) − measurable :

∫

R3
x

∫

ε>0

|h(x, ε)|2 (N(ε))k dεdx < ∞
}

, (3.7)

with N(ε) =
√

2ε and k ∈ Z. So E = L2
N .

Now, we give an existence result for the Wigner-Boltzmann equation (3.6).

Lemma 3.5 Suppose Assumptions 2.4 and 3.2 hold true.
Then, for any value of the parameter α > 0, any initial condition fα

I ∈ D(Λ) and
any time T > 0, there exists a unique solution fα ∈ C1

(
[0, T ]; L2

x,p

)
∩C0 ([0, T ];D(Λ))

to the initial value problem (3.6), f(t = 0, x, p) = fα
I .

Proof: This is a straightforward consequence of the classical semigroup theory -
see e.g. [37] and [51]. Indeed, Λ is a skew-adjoint operator and generates a unitary
group by Stone’s theorem. Since Cel is a bounded perturbation of Λ, Cel + Λ with
domain D(Λ) generates a group of operators.
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3.2 The Quasi-Quantum SHE model (QQSHE)

This section is dedicated to the investigation of the limit α → 0 in (3.6). The collision
phenomena are modeled by the collision operator Cel defined by (2.13). For the sake
of simplicity, we assume that the collision frequency ν is constant. The main result
of this section is

Theorem 3.6 Assumptions 2.4 and 3.2 are supposed to hold true.
Let fα

I ∈ L2
x,p be a convergent sequence such that the limit fI be in E . We

note FI(x, |p|2/2) = fI(x, p). Therefore, FI is in L2
N . We assume that the collision

frequency ν is constant.
Let fα denote the solution of (3.6), with initial condition fα(t = 0, x, p) =

fα
I (x, p), and with the relaxation operator Cel(f) = ν(P(f) − f). Then, as α → 0,

the sequence (fα)α>0 converges (up to the extraction of a subsequence) weakly in
L2(0, T ; L2

x,p) to a limit f ∈ L2(0, T ; E). We note F (t, x, |p|2/2) = f(t, x, p), so that
F ∈ L2(0, T ;L2

N). In addition, F is a weak solution of:

∂tF − 1

ν
P (Λ (Λ(F ))) = 0, (3.8)

F (t = 0, x, ε) = FI(x, ε). (3.9)

Remark 3.7 If the collisions are modeled by the more general collision operator
(2.8), then one can prove that the limit equation satisfied by F is

∂tF − P
(
Λ
(
C−1

el (Λ(F ))
))

= 0, (3.10)

under the condition that the following set of test functions is dense in L∞(0, T ;L2
N) :

H = {ϕ ∈ W 1,∞(0, T ; C∞
c (R3 × R

+)) : P(Λ(C−1
el (Λϕ))) ∈ L∞(0, T ;L2

N)}.
This condition is obviously fulfilled when Cel = ν(Pf − f).

It is possible to insert the expression of Λ into (3.8) (or (3.10)), in order to get
a more explicit form of the equation. However, this expression is quite complicated
and not very illuminating. We shall derive an explicit expression after using an
expansion of Λ in powers of ℏ at section 3.3 below.

Remark 3.8 The quantum (Wigner) transport operator does not preserve the clas-
sical entropy. Therefore, there is no (obvious) classical entropy dissipation for the
Quasi Quantum SHE model. Also, the classical relaxation operator Cel does not
decay the quantum entropy introduced below in section 4. This leaves little hope to
find a simple entropic structure for this model, at least in the framework presented
in this paper.

We have to mention that, unlike the Classical SHE model, the QQSHE model has
not a clear parabolic (or even degenerate parabolic) structure. Indeed, the Wigner
transport operator is a pseudo-differential operator, not a true partial differential
operator.

Last, but not least, the quantum relevance of this model is weak since there is no
indication whether it admits positive solutions (in the sense of operator positivity).
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Proof: We start from (3.6). We multiply by fα and integrate with respect to t, x
and p. This yields

‖ fα(t) ‖2
L2

x,p
+

1

α2

∫ t

0

‖ P⊥fα(s) ‖2
L2

x,p
ds =‖ fα

I ‖2
L2

x,p
. (3.11)

Therefore, the sequence (fα) is bounded in L2
x,p since (fα

I ) is bounded. There exists
f in L∞(0, T ; L2

x,p) such that fα ⇀ f weakly ∗ in L∞(0, T ; L2
x,p). Moreover, the same

estimate (3.11) shows that P⊥fα tends strongly to 0 as α → 0 in the same space.
Consequently, the limit f belongs to E and we can note F (t, x, |p|2/2) = f(t, x, p).

The Wigner-Boltzmann equation can be written in a weak form, by introducing
the following set of test functions:

S =
{
ϕ ∈ W 1,∞(0, T ; L2

x,p) ∩ L∞(0, T ;D(Λ)) : ϕ(T, x, p) = 0
}

.

The weak solutions of (3.6) satisfy

∀ϕ ∈ S
∫

[0,T ]×R6

fα

(
∂tϕ +

1

α
Λϕ +

1

α2
Celϕ

)
dtdxdp =

∫

R6

fα
I ϕ(0, x, p)dxdp.

(3.12)
In order to prove that F is a weak solution of (3.8), let us introduce a test

function Φ(t, x, ε) for this equation, in W 1,∞ (0, T ; C∞
c (R3 × R

+)). Obviously the
function ϕ1(t, x, p) defined by ϕ1(t, x, p) = Φ(t, x, |p|2/2) belongs to S and can be
taken as a test function in (3.12). We consider the asymptotic behaviour of each
term in (3.12) as α → 0, in this special case where the test function ϕ1 is a function
of (t, x, |p|2/2). The weak convergence of fα implies

∫
fα∂tϕ1(t, x, p)dtdxdp →

∫
N(ε)F (t, x, ε)∂tΦ(t, x, ε)dtdxdε

and ∫
fα

I ϕ1(0, x, p)dxdp →
∫

N(ε)FI(x, ε)Φ(0, x, ε)dxdε.

On the other hand, since ϕ1(t, ·, ·) ∈ E , necessarily
∫

fαCelϕ1dtdxdp = 0.
Let us decompose fα as follows:

fα = F α + αgα,

with F α = Pfα and gα = P⊥fα/α. According to Lemma 3.3 (iv), Λϕ1 lies in E⊥.
Therefore,

∫
F αΛϕ1dtdxdp = 0 since F α ∈ E and

1

α

∫
fα Λ ϕ1 dtdxdp =

∫
gα Λ ϕ1 dtdxdp. (3.13)

We are thus led to investigate the behaviour of gα as α → 0. According to Eq.
(3.11), and using the definition of gα, we have

∫ t

0

‖ gα(s) ‖L2
x,p

ds ≤ C.
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Therefore, there exists g such that gα ⇀ g weakly ∗ in L∞(0, T ; L2
x,p) and,

1

α

∫
fα Λ ϕ1 dtdxdp =

∫
gα Λ ϕ1 dtdxdp →

∫
g Λ ϕ1 dtdxdp (3.14)

as α → 0. It remains to relate the last integral in (3.14) to F .
To this aim, we come back to (3.12), that we write with another particular test

function ϕ2 (specified below). Eq. (3.12) can be written in terms of gα and F α.
Since the sequences F α and gα are bounded, keeping only the leading order terms in
this equation leads to

∫
gα Cel ϕ2 dtdxdp = −

∫
F α Λ ϕ2 dtdxdp + O(α),

or, letting α → 0,

∫
g Cel ϕ2 dtdxdp = −

∫
F Λ ϕ2 dtdxdp. (3.15)

Now, by choosing
ϕ2 = (Cel)

−1(Λϕ1),

we deduce that the last integral in (3.14) can be rewritten

∫
g Λ ϕ1 dtdxdp =

∫
g Cel ϕ2 dtdxdp

and straightforward calculations lead to

∫
g Λ ϕ1 dtdxdp = −

∫
N F P

(
Λ
(
(Cel)

−1(Λϕ1)
))

dtdxdε .

Finally, we get

∫
NF

(
∂tΦ −P

(
Λ
(
(Cel)

−1(Λϕ1)
)))

dtdxdε =

∫
NFIΦ(0, x, ε)dxdε (3.16)

which is obviously the weak form of (3.10). It remains to check that this for-
mal identification can be made rigorous. Namely, we have to prove that, if Φ ∈
W 1,∞ (0, T ; C∞

c (R3 × R
+)), then ϕ2 = (Cel)

−1(Λϕ1) is an admissible test function
for (3.12). By Lemma 3.3 (under Assumption 3.2), it is an easy task, since we have

(Cel)
−1(Λϕ1) = −1

ν
Λϕ1 .
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3.3 The QQSHE2 model: quantum corrections to the classi-
cal SHE model

The explicit form of the diffusion term P (Λ(ΛF ))N(ε)/ν in (3.8) is not easy to
handle. As in [20] we give the expansion of this model in ℏ, up to second order
terms. This leads to the classical SHE model enriched with quantum correction
terms.

In the remainder of this paper, when a function F depends on p through the
energy |p|2/2 only, we note equally F (|p|2/2) = F (p) when the context is clear.

The Wigner transport operator Λ depends on the reduced Planck constant. At
usual macroscopic scales, this constant is negligible and the transport operator Λ
can be expanded in powers of ℏ. Formally, one has

Λ = L + ℏ
2L(2) + O(ℏ4) (3.17)

where L = p · ∇x −∇xV · ∇p is the classical transport operator and L(2) is a third
order differential operator given by

L(2) =
1

24
∇⊗3

x V
...∇⊗3

p .

Here the third order tensors are defined as (∇⊗3
x )i,j,k = ∂3

xi,xj,xk
(and analogously for

∇⊗3
p ) and

... denotes the third order tensor product. Formula (3.17) gives the leading
and second order terms of the so-called Wigner-Moyal expansion (see [46]).

Then the diffusion term becomes

N(ε)P (Λ(ΛF )) = N(ε)P (L(LF ))+ℏ
2N(ε)

(
P
(
L(2)(LF )

)
+ P

(
L(L(2)F )

))
+O(ℏ4).

Note that P (L(LF )) is the diffusion term that is involved in the CSHE model (2.11),

(2.14). Indeed, when F is a function of the position and energy only LF = p · ∇̃F ,

where ∇̃ is the “twisted” gradient operator defined at (2.12). Therefore, L (LF ) =

p⊗2 : ∇̃⊗2F −∇xV · ∇̃F . Applying projector P yields

N(ε)P (L (LF )) = 4π
(2ε)3/2

3
∇̃ · ∇̃F − 4π(2ε)1/2∇xV · ∇̃F

and one can check that the right hand side of this equation can be written

4π∇̃ ·
(

(2ε)3/2

3
∇̃F

)

which is the diffusion term in the classical SHE model.
For the computation of the other terms, we refer the reader to Appendix A. They

are summarized in the following formal Lemma:
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Lemma 3.9 We assume that the collision operator is given by (2.13). Up to second
order terms in ℏ, the QQSHE model can be formally approached by the following
QQSHE2 model (in the case where ν is a constant independent of ε):

N(ε)∂tF − 4π

ν
∇̃ ·
(

(2ε)3/2

3
∇̃F

)

−4πℏ
2

24ν

{
∂2

∂ε2

(
(2ε)5/2

5
∇x(∆V ) · ∂ε∇̃F

)
+

∂

∂ε
∇̃ ·
(

(2ε)5/2

5
∇x(∆V )∂2

εF

)}
= 0.

(3.18)

Remark 3.10 Compared with the CSHE model (2.11), additional terms involving
fourth order derivatives appear. They are multiplied by factors involving third order
derivatives of the potential, which is natural since these factors appear in the first
correction to the classical limit in the Wigner-Moyal expansion [46]. Also, these
fourth order derivatives of F involve cross-diffusion terms mixing space and energy
derivatives. This is to be related with the cross-diffusion terms that appear in the
Fokker-Planck equation used in [4].

Remark 3.11 Given that the coefficients of the fourth order derivatives have no
fixed sign, one can wonder about the stability and well-posedness of this model.
As for the QQSHE model, there is no clear entropic structure for the QQSHE2

model. Therefore, no clear indication is given why this model should be well-posed.
A linearized stability analysis of this model is in progress to try to answer this
question. If the model is found linearly stable, there is good hope that it can be used
to efficiently simulate quantum semiconductor devices numerically.

4 Quantum collision operators

All the results given in the following section are formal. In Section 3, the SHE
models are of a hybrid type since they are derived from a microscopic equation
with a quantum transport term and a classical collision operator. To remedy to
this inconsistency, we need to develop a notion of quantum collision operator which
allows us to perform the program leading to SHE-type models.

An important property of the collision operators used in classical kinetic theory
is the entropy dissipation. Therefore, a natural requirement of a quantum collision
operator Q is that it dissipates quantum entropy and that a quantum kinetic equation
such as the Wigner-Boltzmann equation

∂tf + p · ∇xf − θ[V ]f = Q(f) (4.1)

satisfies a quantum analogue to Lemma 2.1.
The collision operator Q will be derived as a quantum counterpart of the classi-

cal electron-phonon collision operator (or its elastic approximation). Therefore, the
equilibrium states of this quantum operator will be “quantum” Maxwellian, as the
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classical operator had (“classical”) Maxwellian equilibria. Consequently, the quan-
tum relative entropy associated with the Von Neumann equation (3.4) is defined by
HQ(ρ) = Tr {ρ(ln ρ− 1+H)} where H = −(ℏ2/2)∆+V is the particle Hamiltonian.
Lemma (3.1) allows to deduce the expression of quantum entropy in the Wigner
framework by

HQ(f) =
1

(2πℏ)3

∫
f

(
Ln(f) +

|p|2
2

+ V − 1

)
dpdx, (4.2)

where the “quantum logarithm” Ln is defined by

Ln(f) = W [ln (Op(f))] ,

assuming that Op(f) > 0. Analogously, we define the “quantum exponential” and
the quantum Maxwellian Max respectively by

Exp(f) = W [exp (Op(f))] ,

Max(x, p) = W

[
exp

(
Op

(
−|p|2

2
− V (x)

))]
= Exp(−|p|2/2 − V ).

Note that Ln and Exp are formal inverses and that −|p|2/2 − V = Ln (Max(x, p)).
Then (4.2) is equivalently written (up to a constant multiplier (2πℏ)2)

HQ(f) =

∫
f (Ln(f) − Ln (Max) − 1) dpdx

and appears as the quantum relative entropy with respect to quantum Maxwellian
steady states. The following Lemma gives a criterion on Q for Eq. (4.1) to be
consistent with the quantum entropy HQ.

Lemma 4.1 Let Q in (4.1) be such that, for any function g, we have:

−
∫

Q(g) (Ln(g) −Ln (Max)) dxdp ≥ 0 (4.3)

Then, if f is a solution of Eq. (4.1), the associated quantum entropy satisfies:

dHQ(f)

dt
≤ 0. (4.4)

Proof: To begin with, we recall that HQ is Gâteaux differentiable and its Gâteaux
derivative at f in the direction δf is (see [22]):

H ′
Q(f)δf = (2πℏ)3Tr {(ln Op(f) + H)Op(δf)}

or,

H ′
Q(f)δf =

∫ (
Lnf +

|p|2
2

+ V

)
δf dpdx.
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Therefore, if f is a solution of (4.1),

dHQ(f)

dt
=

∫ (
Lnf +

|p|2
2

+ V

)
∂tf dpdx

= −
∫ (

Lnf +
|p|2
2

+ V

)
Λf dpdx −

∫ (
Lnf +

|p|2
2

+ V

)
Q(f) dpdx

= −
∫ (

(W [ln(Op(f))] + W [H])
i

ℏ
W [HOp(f) − Op(f)H]

)
dpdx

−
∫

(Ln(f) − Ln (Max))Q(f) dpdx (4.5)

thanks to Lemma (3.1) (iv). Now, using (3.1) (iii), the first integral on the right
hand side can be written

(2π)3iℏ2Tr {(ln (Op(f)) + H) [H, Op(f)]}

or, using the cyclicity of the trace,

(2π)3iℏ2Tr {[Op(f), ln (Op(f))]H + [H,H] Op(f)}

and this trace is obviously null. Finally, the second integral on the right-hand side
of (4.5) is nonnegative according to (4.3), which completes the proof.

Consequently, after [23], what is meant in this paper by quantum collision oper-
ators is a class of collision operators Q that satisfy the following formal properties:
for any function f(x, p),

Mass conservation:
∫
Q(f)(p)dxdp = 0,

Entropy dissipation: −
∫
Q(f) (Ln (f) − Ln (Max)) dxdp ≥ 0.

4.1 The Quantum electron-phonon collision operator

In this section, quantum counterparts of the classical collision operator Ceϕ and of
its elastic approximation Cel are introduced. They may lead to possibly interesting
quantum models for electron-phonon scattering. Moreover, the derivation of a Quan-
tum SHE model in section 5 is performed from a quantum kinetic equation with a
relaxation collision operator which can be understood as a relaxation approximation
of the operators studied in this section.

Keeping Lemma 4.1 in mind, we introduce the following quantum version of the
electron-phonon collision operator Ceϕ described in Section 2.2 (we recall that β is
the phonon energy in scaled variables):

Qeϕ(f) =

∫
S(p, p′) [δ(ε′ − ε − β) + δ(ε′ − ε + β)]

(A(f)′

M ′
− A(f)

M

)
dp′ (4.6)
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where
A(f) = exp W [ln Op(f)] = expLnf, (4.7)

namely Lnf = lnA(f) where ln is the ordinary logarithm. Note that it is not clear
what conditions f should satisfy for A(f) to be a well defined function. Therefore,
the definition of Qeϕ is purely formal at this point and all the results stated in this
Section are formal.

However, we claim that this operator is a natural extension of the classical phonon
operator to quantum systems, and that it is consistent with quantum entropy relax-
ation. Indeed, we have:

Proposition 4.2 The collision operator Qeϕ defined by (4.6) satisfies the following
properties:
(i) Mass conservation:

∫
Qeϕ(f)dp = 0 for any measurable function f .

(ii) Equilibrium states: for any measurable function f(x, p), we have Qeϕ(f) = 0 if
and only if

f(x, p) = Exp

( | · |2
2

+ lnF

( | · |2
2

))
(x, p) = W

[
exp

(
−ℏ

2

2
∆ + Op(ln F )

)]
(x, p)

where F = F (ε) is such that F (ε + β) = F (ε).
(iii) Entropy dissipation: −

∫
Qeϕ(f) (Ln(f) −Ln (Max)) dp ≥ 0 for any function f .

Proof: The mass conservation follows from the symmetry of S(p, p′). The equilibria
of operator Qeϕ can be easily deduced from those of operator Ceϕ by remarking that
Qeϕ(f) = Ceϕ(A(f)). On the other hand, it follows from the symmetry of S that

−
∫

Qeϕ(f) (Ln(f) −Ln (Max)) dp =

1

2

∫
S(p, p′) (δ+ + δ−)

(A(f)′

M ′
− A(f)

M

)(
ln

A(f)′

M ′
− ln

A(f)

M

)
dpdp′dx

which is nonnegative since ln is an increasing function.

Like in the case of the classical electron-phonon scattering, we are interested in
the elastic limit β → 0 of the operator Qeϕ. More precisely, we let ω0 tend to zero
and get:

Qel(f)(p) = N(|p|2/2)
{
P
(
S̃(p, ·)A(f)(·)

)
−P

(
S̃(p, ·)

)
A(f)(p)

}
, (4.8)

where S̃ is defined as in section 2.2 by formula (2.9). We drop the tildas in the
remainder of the paper. This operator has the properties of a quantum collision
operator:
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Proposition 4.3 The collision operator Qel defined by (4.8) satisfies the following
properties:
(i) Mass conservation:

∫
Qel(f)dp = 0 for any measurable function f .

(ii) Equilibrium states: for any measurable function f(x, p), we have Qel(f) = 0 if
and only if there exists a function λ(x, ε) of position and energy only such that

f(x, p) = Exp
(
λ̃
)

(x, p),

where λ̃(x, p) = λ(x, |p|2/2).
(iii) Entropy dissipation: −

∫
Qel(f) (Ln (f) − Ln (Max)) dp ≥ 0 for any function f .

Remark 4.4 Note that f , unlike λ, is not a function of the energy only in general.
Indeed, it is not clear that the quantum exponential of a function of position and
energy (x, ε(p)) remains a function of (x, ε(p)) (with ε(p) = |p|2/2).

Proof: Mass conservation and entropy dissipation can be proven in the same way
as for Qeϕ. For (ii), we consider

−
∫

Qel(f)(p)A(f)(p)dp=
1

2

∫
δ(
|p′|2
2

− |p|2
2

)S(p, p′) (A(f)(p′) −A(f)(p))
2
dp′dp

≥ 0,

where A is defined by (4.7).
Obviously, if Qel(f) = 0, then one necessarily has A(f)(x, p) = A(f)(x, p′) when-

ever |p| = |p′|. Therefore, A(f) is a function of x and |p|2/2 only. Consequently,
lnA(f) depends only on |p|2/2 too and, finally, one can set λ(ε) = lnA(f) = Lnf ,
or f = Expλ.

4.2 The quantum relaxation operator

In classical kinetic theory, an important class of collision operators is constituted by
the relaxation operators. The mathematical study of these operators is simpler than
for Boltzmann-like collision operators although they share many important properties
with them, such as entropy dissipation, mass conservation and the expression of their
equilibrium states.

The task in this section is to introduce a consistent notion of quantum relaxation
operator that satisfies properties (i), (ii) and (iii) of Proposition 4.3. To this aim, we
introduce the following minimization problem:

Given f , find Ef such that:

HQ(Ef) = Min {HQ(g) /P(f − g) = 0} . (4.9)
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Assuming that, for f in a suitable space, a solution Ef to this problem exists, we set:

Qrel(f) = ν (Ef − f) , (4.10)

where ν is assumed to be constant in the sequel.
It remains to prove that such an operator has the required properties. We have:

Proposition 4.5 The collision operator Qrel defined by (4.10) satisfies the following
properties:
(i) Mass conservation:

∫
Qrel(f)dp = 0 for any measurable function f .

(ii) Equilibrium states: for any measurable function f(x, p), we have Qrel(f) = 0 if
and only if there exists a function λ(x, ε) of x and the energy only such that

f(x, p) = Exp(λ̃)(x, p),

where λ̃(x, p) = λ(x, |p|2/2).
(iii) Entropy dissipation: −

∫
Qrel(f) (Ln(f) − Ln (Max)) dp ≥ 0 for any function f .

Before proving Proposition 4.5, we state an important property of the solutions of
the minimization problem (4.9).

Lemma 4.6 Let f be a function such that a solution of the minimization problem
(4.9) exists. We denote such a solution by Ef . Then, there exists a function λ(x, ε)
such that

Ef(x, p) = Exp(λ)(x, p).

Proof: Since Ef is the minimizer of HQ(g) under the constraint P(f −g) = 0, there
exists a Lagrange multiplier µ(x, ε) such that H ′

Q(f)g + µP(g) = 0 for all g. This
means that, for all g,

∫ (
Ln(f) +

|p|2
2

+ V − µ(x, |p|2/2)

)
g(x, p)dpdx = 0,

that is: f = Exp(λ(x, ε)) with λ(x, ε) = µ(x, ε) − ε − V (x).

Proof of Proposition 4.5: Point (i) is obvious since the definition of Ef implies
that P(f − Ef) = 0. Point (ii) is a straightforward consequence of Lemma 4.6. The
proof of point (iii) is inspired from [20]. We introduce

Γ : γ ∈ [0, 1] →
∫

R6

ν(x, ε)h((1 − γ)Ef + γf)dxdp

with h : f → f(Lnf − 1 + |p|2/2 + V ). Deriving Γ by a chain rule yields

dΓ

dγ
(γ) =

∫

R6

ν(x, εp) (f − Ef)
(
Ln ((1 − γ)Ef + γf) + |p|2/2 + V

)
dxdp.

21



The convexity of h implies that Γ is also convex so that (dΓ/dγ)(1) ≥ Γ(1) − Γ(0),
which in turn gives

−
∫

Qrel(f)
(
Ln(f) + |p|2/2 + V

)
dxdp ≥ ν (HQ(f) − HQ(Ef)) ≥ 0

since Ef is a minimizer of HQ and ν is a constant.

Before turning to the derivation of a fully quantum SHE type model, it is impor-
tant to underline that the collisional Wigner equation equipped with relaxation type
operator Qrel is a consistent quantum model in the sense that it (formally) preserves
positivity. Precisely, the following proposition holds true.

Proposition 4.7 Let the initial datum fI be positive (in the sens of operators, i.e.
ρI = Op(fI) is a positive operator). If the following initial value problem

∂tf + Λf = Qrelf, f(t = 0, x, p) = fI(x, p)

has a solution f(t, x, p), then this solution is positive ( i.e. ρ(t) = Op(f)(t) is a
positive operator) for all time.

Proof: The proof is very close to the proof of Lemma 2.1 in [20]. We just emphasize
on the positivity of operator Op(Ef). Indeed, according to Lemma 4.6, to any given
function f there can be associated an energy dependent function λf such that

Ef = Exp(λf ).

Consequently, Op(Ef) = Op(W (exp Op(λf))) = exp Op(λf) which obviously is a
positive operator.

This quantum relaxation collision operator will be used for the derivation of the
full quantum SHE model. Note that at this point, the existence of a minimizer for
(4.9) is an open problem.

5 The full Quantum SHE model (QSHE)

In this section, we formally investigate the limit α → 0 in the following rescaled
Wigner-Quantum relaxation equation

α∂tf
α + Λfα =

1

α
Qrel(f

α), (5.1)

where we recall that Λ = p · ∇x − θ[V ] is the Wigner operator. In the sequel, we
assume that

Assumption 5.1 For any given function f , there exists a solution Ef to the mini-
mization problem (4.9), and this solution is unique.
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The following formal result holds:

Theorem 5.2 If (5.1) admits a solution fα for all α, and if the so-obtained sequence
fα admits a convergent subsequence, then the limit is denoted by F and there exists
a function λ such that λ̃ : (t, x, p) → λ(t, x, |p|2/2) satisfies

F(t, x, p) = Exp(λ̃)(t, x, p)

N(ε)∂tP(Exp(λ̃)) − N(ε)P(Λ(
1

ν
Λ(Exp(λ̃)))) = 0 (5.2)

Furthermore, the quantum entropy decreases with time:

d

dt
HQSHE(F) ≤ 0, HQSHE(F) =

∫
P(F) (λ + ε + V − 1) N(ε)dεdx (5.3)

Remark 5.3 The main difference between the QQSHE and QSHE models is that
the unknown F in the QQSHE model (which is a function of position and energy) is
replaced by Expλ̃ in the QSHE model, where λ is a function of position and energy.
This is a true difference since F = Expλ̃ is in general not a function of position
and energy only. This difference makes the QSHE model consistent with quantum

entropy decay (5.3) rather than classical entropy decay. Again, we do not make this
equation more explicit. Indeed, here, it is not possible to make the relation between
Expλ̃ and λ explicit because Exp is a nonlinear non-local operator.

Remark 5.4 Equation (5.2) is closed provided the minimization problem (4.9) is
uniquely solvable. Indeed, in this case, there is a one to one correspondence between
the intensive quantity λ and the extensive quantity P (Expλ).

Proof: First, letting α → 0 in equation (5.1) leads to Qrel(F) = 0 so that, according

to Proposition 4.5, there exists λ(x, ε) such that F = Expλ̃. Now, the Chapman-
Enskog expansion of fα is written

fα = Efα + αgα

since fα is close to the equilibrium when α is small. We assume that Efα and gα

are bounded with respect to α in a suitable topology (see Remark 5.5 below). Then,
introducing this expansion in equation (5.1) yields, at first order in α:

P (∂tEfα + Λgα) = O(α) (5.4)

and, at zeroth order in α:
ΛEfα = −νgα + O(α) (5.5)

since Qrel (f
α) = ν (Efα − (Efα + αgα)) = −α νgα. According to (5.5), Eq. (5.4)

becomes

P
(

∂tEfα − Λ

(
1

ν
ΛEfα

))
= O(α). (5.6)

We recall that Efα → Expλ̃ as α → 0. Letting α → 0 in (5.6) leads to (5.2). The
entropy decay is obtained by taking the limit α → 0 in (4.4).
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Remark 5.5 At this stage of investigation, any rigorous convergence proof remains
speculative. However, in simpler situations, if any, a reasonable proof would at least
require that sequences Efα and gα be bounded with respect to α in a suitable topology
(precisely the topology in which convergence of sequence fα would be proven to hold).

From now on, we drop the tildas and identify λ to λ̃. As in the case of the Quasi-
Quantum SHE model, it is interesting to expand the Quantum SHE model in powers
of ℏ up to second order terms. We recall that Λ = L + ℏ

2L(2) + O(ℏ4) where

L = p·∇x−∇xV ·∇p is the classical transport operator and L(2) = (1/24)∇⊗3
x V

...∇⊗3
p .

However, unlike in the case of the Quasi-Quantum SHE model, here not only does
Λ depend on ℏ, but also Expλ. After [20], the quantum exponential of any function
f(x, p) can be written

Expf = exp f
[
1 + ℏ

2T f + O(ℏ4)
]

(5.7)

T f =
1

8
(∇⊗2

x f : ∇⊗2
p f −∇x∇pf : ∇p∇xf +

1

3
(∇⊗2

x f : ∇pf∇pf

−2∇x∇pf : ∇pf∇xf + ∇⊗2
p f : ∇xf∇xf)). (5.8)

Therefore, the QSHE model is formally approached, up to second order terms,
by

N(ε)∂tF − N(ε)P
(

L

(
1

ν
L(F )

))
+ ℏ

2N(ε)∂t [P (FT (ln F ))]

−ℏ
2N(ε)P

[(
L

(
1

ν
L(2)

)
+ L(2)

(
1

ν
L

))
(F ) − L

(
1

ν
L (FT (lnF ))

)]
= 0

(5.9)
where we have set F = exp λ.

We recall that ν is a constant coefficient. Using the computations already per-
formed to prove Lemma 3.9, we obtain

N(ε)∂tF − 4π

ν
∇̃ ·
(

(2ε)3/2

3
∇̃F

)

−4πℏ
2

24ν

{
∂2

∂ε2

(
(2ε)5/2

5
∇x(∆V ) · ∂ε∇̃F

)
+

∂

∂ε
∇̃ ·
(

(2ε)5/2

5
∇x(∆V )∂2

εF

)}

+ℏ
2N(ε)∂t [P (FT (ln F ))] +

ℏ
2N(ε)

ν
P [L (L (FT (ln F )))] = 0.

Note that, in this equation, the two first lines correspond to the left hand side of the
QQSHE2 equation (3.18). Other second order terms appear due to the expansion of
the quantum exponential Exp into powers of ℏ. Since λ is a function of the position
and the energy only, after (5.8) T λ can be written as

T λ =
1

8

{
∆λ∂ελ + p⊗2 :

(
∇⊗2

x λ∂2
ελ −∇x (∂ελ)∇x (∂ελ)

)

+
1

3

[
p⊗2 :

(
∇⊗2

x λ (∂ελ)2 − ∂ε (∇xλ∇xλ) ∂ελ + ∇xλ∇xλ∂2
ελ
)

+ |∇xλ|2∂ελ
]}

. (5.10)
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According to (5.10), T λ takes the following form

1

8

(
I[λ] + p⊗2 : J[λ]

)
(5.11)

where

I[λ] = ∆λ ∂ελ +
1

3
|∇xλ|2 ∂ελ (5.12)

J[λ] = ∇⊗2
x λ ∂2

ελ −∇x (∂ελ)∇x (∂ελ)

+
1

3

[
∇⊗2

x λ (∂ελ)2 − ∂ε (∇xλ∇xλ) ∂ελ + ∇xλ∇xλ ∂2
ελ
]
. (5.13)

Therefore, the second order terms in the formal expansion of the QSHE model can
be expressed in terms of I and J .

Lemma 5.6 We assume that the collision operator is given by (4.10). Up to second
order terms in ℏ, the QSHE model can be formally approached by the following
QSHE2 model (in the case where ν is a constant):

N(ε)∂tF − 4π

ν
∇̃ ·
(

(2ε)3/2

3
∇̃F

)

−4πℏ
2

24ν

{
∂2

∂ε2

(
(2ε)5/2

5
∇x(∆V ) · ∂ε∇̃F

)
+

∂

∂ε
∇̃ ·
(

(2ε)5/2

5
∇x(∆V )∂2

εF

)}

+
4πℏ

2

8

{
∂t

[
F

(√
2εI[lnF ] +

(2ε)2/3

3
TraceJ[lnF ]

)]

+
1

ν

[
∇̃ ·
(

(2ε)3/2

3
∇̃
(
F I[ln F ]

))
+ 2∇̃⊗2 :

(2ε)5/2

15

(
F J[lnF ]

)

∇̃ ·
(

(2ε)5/2

3
∇̃
(
F TraceJ[lnF ]

))]}
= 0,

where I and J are given by (5.12) and (5.13) respectively, and TraceJ denotes the
trace of the second order tensor J , namely

TraceJ = ∆λ ∂2
ελ − |∇x (∂ελ) |2 +

1

3

(
∆λ (∂ελ)2 − ∂ε

(
|∇xλ|2

)
∂ελ + |∇xλ|2∂2

ελ
)
.

(5.14)

Remark 5.7 In this equation, we first find the terms involved in the QQSHE2 model
(3.18) (the first two lines). Then, additional terms arise due to the nonlinear relation
between F and Expλ̃. They still are fourth order terms, but now they are nonlin-
ear. They still involve crossed derivatives. The same stability questions as for the
QQSHE2 model can be posed for this model, completed by the fact that it is now a
nonlinear model. The answer to the stability question is therfore even more complex.
That this model can be effective for practical computations is not clear. Probably,
a direct numerical resolution of the full QSHE model will be more efficient, as it is
the case for Drift Diffusion models (see e.g. [29], [30] and [17]).
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6 Conclusion

In this paper, we have investigated possible quantum extensions of classical SHE (or
Fokker-Planck) models. After a review of the derivation of classical SHE models,
two possible extensions have been given: one by using a classical operator at the
right hand side of a quantum Wigner equation, a second one, by using a quantum
version of a relaxation operator. The first approach obviously lacks consistency but
gives rise to a seemingly tractable equation. The second approach, although more
consistent, gives rise to a rather complex model, the pratical effectiveness of which
is not clear. More work is required to settle the question of stability of these models
and to try to find more tractable expressions of them.

Appendix

A The QQSHE2 model

In the sequel, the following identities are needed (a denotes a fourth order tensor
and Einstein’s convention is used):

P(1) = 1, P(p) = 0, P
(
p⊗2
)
(ε) =

2ε

3
δ, (A.1)

(
P
(
p⊗4
)

:: a
)
(ε) =

(2ε)2

15
(ai,i,j,j + ai,j,i,j + ai,j,j,i) (A.2)

where δ denotes the second order tensor the components of which are δi
j (δi

j is the
Kronecker symbol). No confusion should arise with the Dirac measure δ. Moreover,
:: denotes the fourth order tensor product, defined by

a :: b = ai,j,k,l bi,j,k,l,

for two fourth order tensors a and b.
The trace of any second order tensor G is denoted by TraceG. We recall that we

note ∇̃ = ∇x −∇xV ∂ε.
We first compute the term P

(
L(L(2)F )

)
, where F depends on p only through

the kinetic energy |p|2/2. Obviously then, ∇pF = p∂εF . Then:

∇⊗3
p F = ∇p ⊗ [∇p ⊗ (p ∂εF )]

= ∇p ⊗
[
δ ∂εF + p ⊗ p ∂2

εF
]

= (2δ ⊗ p + p ⊗ δ) ∂2
εF + p⊗3 ∂3

εF

and, since ∇⊗3
x V is a symmetric tensor, we have:

∇⊗3
x V

...∇⊗3
p F = 3∇⊗3

x V
...p ⊗ δ ∂2

εF + ∇⊗3
x V

...p⊗3 ∂3
εF

= 3p · ∇x (∆V ) ∂2
εF + ∇⊗3

x V
...p⊗3 ∂3

εF (A.3)
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since G : δ = Trace (G) for any second order tensor. Now, apply L to ∇⊗3
x V

...∇⊗3
p F .

First, by (A.3),

p · ∇x(∇⊗3
x V

...∇⊗3
p F ) = 3p⊗2 : ∇x

(
∇x(∆V )∂2

εF
)

+ p⊗4 :: ∇x

(
∇⊗3

x V ∂3
εF
)

(A.4)

and, on the other hand,

∇xV · ∇p

(
∇⊗3

x V
...∇⊗3

p F

)

= 3∇xV ∇x(∆V ) : ∇p

(
p∂2

εF
)

+ ∇xV ∇⊗3
x V :: ∇p

(
p⊗3∂3

εF
)

= 3∇xV ∇x(∆V ) :
(
δ∂2

εF + p⊗2∂3
εF
)

+∇xV ∇⊗3
x V ::

[(
δp⊗2 + 2p⊗2δ

)
∂3

εF + p⊗4∂4
εF
]
.

(A.5)

We recall that N(ε) = 4π
√

2ε and that, for any function f(p) and any function
φ independent of p or depending on p only through the energy |p|2/2, we have
P(fφ) = P(f)φ. Based on this, the projection on E takes the form:

N(ε)P
(

p · ∇x(∇⊗3
x V

...∇⊗3
p F )

)
(ε)

= N(ε)P
(
3p⊗2

)
: ∇x

(
∇x(∆V )∂2

εF
)

+ N(ε)P
(
p⊗4
)

:: ∇x

(
∇⊗3

x V ∂3
εF
)

= 4π

{
(2ε)3/2∇x ·

(
∇x(∆V )∂2

εF
)

+
(2ε)5/2

5
∇x ·

(
∇x(∆V )∂3

εF
)}

= 4π
∂

∂ε
∇x ·

{
(2ε)5/2

5

(
∇x(∆V )∂2

εF
)}

,

according to (A.4) (we have used (A.1) and (A.2)). Following (A.5), we deduce

N(ε)P
(
∇xV · ∇p(∇⊗3

x V
...∇⊗3

p F )

)
(ε)

= N(ε)
{
3∇xV ∇x(∆V ) :

(
δ∂2

εF + P
(
p⊗2
)
∂3

εF
)

+ ∇xV ∇⊗3
x V ::

[(
δP
(
p⊗2
)

+ 2P
(
p⊗2
)
δ
)
∂3

εF + P
(
p⊗4
)
∂4

εF
]}

= 4π
∂

∂ε

{
(2ε)3/2∇xV · ∇x(∆V )∂2

εF +
(2ε)5/2

5
∇xV · ∇x(∆V )∂3

εF

}

= 4π
∂

∂ε
∇xV · ∂

∂ε

{
(2ε)5/2

5
∇x(∆V )∂2

εF

}

where we have used (A.1), (A.2) and the symmetries of ∇3
xV . Therefore,

N(ε)P
(
L
(
L(2)F

))
(ε) =

4π

24

∂

∂ε
∇̃ ·
{

(2ε)5/2

5
∇x(∆V )∂2

εF

}
.

Let us turn to P(L(2)(LF )). First, note that, for any vector G(x, ε) depending

only on the position and the energy (such as ∇̃F and its derivatives with respect to
ε), one can write

∇p (p · G) = G + p(p · ∂εG). (A.6)
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This will be useful in the following computations. We start from LF = p · ∇̃F and
apply ∇⊗3

p . Using (A.6), this gives

∇⊗3
p

(
p · ∇̃F

)
= ∇⊗2

p

(
∇̃F + p

(
p · ∂ε∇̃F

))

= ∇p

(
p ∂ε∇̃F

)
+ ∇p

(
δ
(
p · ∂ε∇̃F

))
+ ∇p

(
p ∂ε∇̃F

)
+ ∇p

(
p⊗2

(
p · ∂2

ε∇̃F
))

= 3δ∂ε∇̃F + 3p⊗2∂2
ε∇̃F + (2δp + pδ)

(
p · ∂2

ε∇̃F
)

+ p⊗3
(
p · ∂3

ε∇̃F
)

.

Using the symmetry of the third order tensor ∇⊗3
x V , we get:

24L(2) (LF ) = 3 ∂ε∇̃F · ∇x (∆V ) + 3∇⊗3
x V

...p⊗2∂2
ε ∇̃F

+3 p⊗2 : ∂2
ε∇̃F∇x (∆V ) + p⊗4 :: ∇⊗3

x V ∂3
ε ∇̃F.

Reminding (A.1) and (A.2), we have

24P
(
L(2) (LF )

)
= N(ε)

(
3∇x(∆V ) · ∂ε∇̃F

)
+ 3N(ε)P

(
p⊗2
)

:
(
∂2

ε∇̃F ∇x (∆V )
)

+3N(ε)P
(
p⊗2
)
∂2

ε∇̃F
...∇⊗3

x V + N(ε)P
(
p⊗4
)

:: ∂3
ε ∇̃F∇⊗3

x V

= 4π
{

3(2ε)1/2∇x (∆V ) · ∂ε∇̃F + (2ε)3/2
(
2∇x (∆V ) · ∂2

ε ∇̃F
)

+
(2ε)5/2

5

(
∇̃ (∆V ) · ∂3

ε∇̃F
)}

,

which finally gives

N(ε)P
(
L(2) (LF )

)
(ε) =

4π

24

∂2

∂ε2

{
(2ε)5/2

5
∇x(∆V ) · ∂ε∇̃F

}
.

B The QSHE2 model

Let us note λ = ln F as in Theorem 5.2. The function λ is a function of x and ε
only. We shall identify the functions (x, p) → λ(x, |p|2/2) and λ when no confusion
arises. We recall that, for f(x, p) = λ(x, |p|2/2), formula (5.8) can be rewritten as

T λ(x, p) =
1

8

(
I + p⊗2 : J

)

where I and J are given by (5.12) and (5.13) respectively. The expression of the
trace of the second order tensor J is given by (5.14).

The terms to compute are P (FT (ln F )) and P (L (L (FT (ln F )))). Since F is a
function of the energy only, the first term is equal to F P (T (ln F )).
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Computation of N F P (T (lnF ))

Here, we only have to project Eq. (5.10). Using formulas (A.1) and (A.2), this
equation becomes (we recall that N(ε) = 4π(2ε)1/2):

N(ε)P(T λ) =
4π

8

(√
2ε I +

(2ε)3/2

3
TraceJ

)

where TraceJ is explicited in (5.14).

Computation of N P (L (L (FT (ln F ))))

We first give some expressions valid for any function G and second order tensor
G that depend only on the energy. It has been seen that LG = p · ∇̃G. Then a
straightforward computation yields

L(LG) = L(p · ∇̃G) = p⊗2 : ∇̃⊗2G −∇xV · ∇̃G

where L(p) = −∇xV has been used. Recalling that N(ε) = 4π
√

2ε, formula (A.1)
gives

N(ε)P (L (LG)) = 4π

(
(2ε)3/2

3
∇̃ · ∇̃(G) −

√
2ε∇xV · ∇̃G

)

and, since ∇̃ (2ε)(k+1)/2 = (k + 1) (2ε)k/2 ∇xV ,

N(ε)P (L (LG)) = 4π∇̃ ·
(

(2ε)3/2

3
∇̃G

)
. (B.1)

On the other hand, since L is a first order tensor, we have

L
(
L
(
p⊗2 : G

))
= L

(
L
(
p⊗2
))

: G + 2 L
(
p⊗2
)

: L (G) + p⊗2 : L (L (G)) .

Obviously, Lp = −∇xV and L (∇xV ) = p · ∇x (∇xV ). Therefore,

L
(
L
(
p⊗2
))

= L (−∇xV p − p∇xV )
= [−p · ∇x (∇xV )] p − p [p · ∇x (∇xV )] + 2∇xV ∇xV.

(B.2)

Since G depends only on the energy, we have LG = p · ∇̃ (G) and, consequently,

L (L (G)) =
(
p⊗2 : ∇̃⊗2

)
G −∇xV · ∇̃ (G) . (B.3)

Therefore, reminding that L(p) = −∇xV , LG = p · ∇̃ (G), that G is symmetric, and
using (B.2) and (B.3), we obtain

L
(
L
(
p⊗2 : G

))
= [− (2 p · ∇x (∇xV )) p + 2∇xV ∇xV ] : G

+4 (−∇xV ) p : p · ∇̃ (G) + p⊗4 :: ∇̃⊗2G − p⊗2 : ∇xV · ∇̃ (G) ,
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which, according to (A.1) and (A.2), yields

N(ε)P
[
L
(
L
(
p⊗2 : G

))]
= 4π

{
2

(
−(2ε)3/2

3
∇⊗2

x V +
√

2ε∇xV ∇xV

)
: G

+ 4
(2ε)3/2

3

(
−∇xV ∇̃

)
: G +

(2ε)5/2

15

(
∇̃ · ∇̃ (TraceG) + 2 ∇̃⊗2 : G

)

−(2ε)3/2

3
∇xV · ∇̃ (TraceG)

}

Finally, using again ∇̃ (2ε)(k+1)/2 = (k + 1) (2ε)k/2 ∇xV , we have

N(ε)P
[
L
(
L
(
p⊗2 : G

))]
= 4π

{
2∇̃⊗2 :

(2ε)5/2

15
G + ∇̃ ·

(
(2ε)5/2

3
∇̃TraceG

)}
.

(B.4)
Let us go back to the computation of N P (L (L (FT (ln F )))). Taking for G the

function F I and, for G, the second order tensor F J , Equations (B.1) and (B.4)
allow to conclude that

N P (L (L (FT (ln F )))) =
4π

8

{
∇̃ ·
(

(2ε)3/2

3
∇̃ (F I)

)
+ 2∇̃⊗2 :

(2ε)5/2

15
(F J )

+∇̃ ·
(

(2ε)5/2

3
∇̃ (F TraceJ )

)}
,

since by (5.11) we have FT (lnF ) = F I + p⊗2 : F J .
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