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The problem of magnetic insulation in a plane diode is discussed. Starting from the Child–Langmuir
asymptotics of the stationary Vlasov–Maxwell system, various limit problems are exhibited and
solved. Explicit formulas for the magnetic field at the cathode and for the electron sheath width are
provided. The analysis allows one to recover and to complete the various known results related to
magnetic insulation. In addition, an ensemble of intermediate models ranging from the quasilaminar
to the laminar model, and involving the formation of virtual cathodes, is exhibited. A stability
analysis is then performed to determine which of these models are stable. The virtual cathode
models are shown to be unstable under dissipation effects, and most of them are shown to be
unstable under geometry effects !i.e., when replacing the planar geometry by the cylindrical one".
The stability argument shows that in some situations, the laminar model is unstable while in other
situations the quasilaminar one is unstable. This gives some indication for the choice of the
appropriate magnetic insulation model. © 1998 American Institute of Physics.
#S1070-664X!98"02605-6$

I. INTRODUCTION

We study the stationary self-consistent problem of mag-
netic insulation under space-charge limitation via the Child–
Langmuir asymptotics of the Vlasov–Maxwell system. This
approach was introduced by Langmuir and Compton1 and
recently developed by Degond and Raviart2 to analyze the
space-charge-limited operation of a vacuum diode. In a di-
mensionless form of the Vlasov–Poisson system, the ratio of
the typical particle velocity at the cathode to that reached at
the anode appears as a small parameter.2 The associated per-
turbation analysis provides a mathematical framework to the
results of Langmuir and Compton,1 stating that the current
flowing through the diode cannot exceed a certain value
called the Child–Langmuir current. After this work, various
extensions have been provided namely to the cylindrical and
spherical diodes,3 to semiconductor devices !a review can be
found in Ref. 4", and to bipolar diodes.5

In this paper, we propose an extension of this approach,
based on the Child–Langmuir asymptotics to magnetized
flows, in view of the earlier works about self-consistent mod-
els of magnetically insulated diodes by Ron et al.6 and Love-
lace and Ott.7 The models of Ron et al. !or Lovelace and Ott"
are rederived from our approach and their analysis com-
pleted. In addition to these models, a set of ‘‘parasitic’’ mod-
els is exhibited and its stability is studied under dissipation
and geometry effects !Fig. 1".

II. SETTING OF THE PROBLEM

We consider a plane diode consisting of two perfectly
conducting electrodes, a cathode (X!0) and an anode (X
!L) supposed to be infinite planes, parallel to (Y ,Z). The

electrons, with charge "e and mass m , are emitted at the
cathode and submitted to an applied electromagnetic field

Eext!EextX, Bext!BextZ,

such that Eext%0 and Bext&0. Such an electromagnetic field
does not act on the PZ component of the particle momentum.
Hence, we shall consider a situation where this component
vanishes, leading to a confinement of electrons to the plane
Z!0. The relationship between momentum and velocity is
then given by the relativistic relations

V!P"!
P

'm , '!!1#
!P!2

m2c2,
!1"

V!!VX ,VY ", P!!PX ,PY ", !P!2!PX
2#PY

2 ,

which can also be written

V!P"!“PE!P", !2"

where E is the relativistic kinetic energy

E!P"!mc2!'"1 ", !3"

and c is the speed of light.
We shall, moreover, assume that the electron distribution

function F does not depend on Y and that the flow is station-
ary and collisionless. The injection profile G(PX ,PY) at the
cathode is assumed to be given, whereas no electron is in-
jected at the anode. The system is then described by the so
called 1.5-dimensional Vlasov–Maxwell model

VX
(F
(X #e" d)

dX"VY
dA
dX # (F

(PX
#eVX

dA
dX

(F
(PY

!0,

X!!0,L ", !PX ,PY "!R2, !4"
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d2)
dX2 !

e
*0

N!X ", X!!0,L ", !5"

d2A
dX2 !"+0JY!X ", X!!0,L ", !6"

subject to the following boundary conditions:

F!0,PX ,PY "!G!PX ,PY ", PX$0, !7"

F!L ,PX ,PY "!0, PX%0, !8"

)!0 "!0, )!L "!)L!"LEext , !9"

A!0 "!0, A!L "!AL!LBext . !10"

In this system, the macroscopic quantities, namely the par-
ticle density N , X and Y components of the current density
JX , JY , are, respectively, given by

N!X "!$
R2
F!X ,PX ,PY "dPXdPY , !11"

JX!X "!"e$
R2
VX!P"F!X ,PX ,PY "dPXdPY , !12"

JY!X "!"e$
R2
VY!P"F!X ,PX ,PY "dPXdPY . !13"

In the above equations, *0 and +0 are, respectively, the
vacuum permittivity and permeability. The boundary con-
ditions are justified by the fact that the electric field
E!"d)/dX and the magnetic field B!dA/dX are exactly
equal to the external fields when self-consistent effects are
ignored (N!JY!0). Besides, Eq. !6" is in fact the projec-
tion of Ampère’s law on the Y axis. The projection on the X
axis gives

(BZ

(Y "
(BY

(Z !+0JX .

Since the left-hand side of the above equation vanishes !be-
cause B depends only on X", JX has to vanish, but this fact
cannot be guaranteed a priori. The 1.5-dimensional model
!4"–!10" ignores the self-consistent magnetic field due to JX ,

which would introduce two-dimensional effects, and is only
an approximation of the complete stationary Vlasov–
Maxwell system. Nevertheless, our study of this model will
give rise to two regimes. For a strong applied magnetic field,
electrons do not reach the anode and come back to the cath-
ode leading to a vanishing JX component of current density;
our model is fully rigorous in this case. When the applied
magnetic field is not strong enough to insulate the diode, JX
does not vanish and our model can be viewed as an approxi-
mation of the Maxwell equations.

Similar to !11"–!13", we define the moments associated
with the incoming particle distribution function by

NG!$
R#
2
G!PX ,PY "dPXdPY , !14"

JX
G!"e$

R#
2
VX!P"G!PX ,PY "dPXdPY , !15"

JY
G!"e$

R#
2
VY!P"G!PX ,PY "dPXdPY , !16"

TG!$
R#
2

E!P"G!PX ,PY "dPXdPY , !17"

where R#
2 !,(PX ,PY)!R2, PX$0- and the thermal emis-

sion velocity is VG!!(TG/mNG). The quantities !14"–!17",
respectively, define the incoming particle density, the X and
Y components of the incoming current density, and incoming
particle kinetic energy.

In order to get a better insight in the behavior of the
diode, we write the model in dimensionless variables in the
spirit of Refs. 2 and 8. We first introduce the following units
for position, velocity, momentum, electrostatic potential,
vector potential, particle density, current, and distribution
function, respectively:

X̄!L , V̄!c , P̄!mc , Ē!mc2,

)̄!
mc2

e
, Ā!

mc

e
, N̄!

*0)̄

xX̄2
, J̄!"ecN̄ ,

F̄!
N̄
P̄2
,

and the corresponding dimensionless variables

x!X/X̄ , p!P/ P̄!!px ,py",

v!!vx ,vy"!V/V̄!p/!1#p2, *!E /Ē!!1#p2"1,

.!)/)̄, a!A/Ā , n!N/N̄ , j!J/ J̄ , f!F/F̄ .

The next step is to express that particle emission at the
cathode occurs in the Child–Langmuir regime: In such a
situation, the thermal velocity VG is much smaller than the
typical drift velocity supposed to be of the order of the speed
of light c . Letting *!VG /c , we shall assume that

f !0,px ,py"!g*!px ,py"!
1
*3

g" px* , py* # , px$0,

FIG. 1. Nonmagnetically insulated diode: phase portrait (x ,px) under as-
sumption !38".
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where g is a given profile. The scaling factor *3 ensures that
the incoming current remains finite independent of *,
whereas the dependence on p/* expresses the fact that elec-
trons are emitted at the cathode with a very small velocity.
We refer to Refs. 2 and 8 for a detailed discussion of the
scaling. The dimensionless system reads

vx
( f *

(x #" d.*

dx "vy
da*

dx # ( f *

(px
#vx

da*

dx
( f *

(py
!0,

!x ,px ,py"!!0,1"&R2, !18"

d2.*

dx2 !n*!x ", x!!0,1", !19"

d2a*

dx2 ! j y
*!x ", x!!0,1", !20"

n*!x "!$
R#
2
f *!x ,px ,py", !21"

j y
*!x "!$

R#
2

vy f *!x ,px ,py"dpxdpy ,

!$
R#
2

py
!1#!p!2

f *!x ,px ,py"dpxdpy , !22"

f *!0,px ,py"!g*!px ,py"!
1
*3

g" px* , py* # , px$0,

!23"

f *!1,px ,py"!0, px%0, !24"

.*!0 "!0, .*!1 "!.L , !25"

a*!0 "!0, a*!1 "!aL . !26"

We shall investigate the limit behavior of this system when
*→0. The mathematical treatment is developed in Ref. 9
using the tools of Refs. 3 and 10. To derive the limit models,
we first begin by writing the various invariants of the prob-
lem.

A. Invariants

The x component of the current and the total energy,
respectively, given by

j x
*!x "!$

R
vx f *!px ,py"dpxdpy

!$
R

px
!1#!p!2

f *!px ,py"dpxdpy , !27"

and

k*!$
R2

vxpx f *!x ,px ,py"dp"
1
2 % " d.*

dx # 2"" da*

dx # 2& ,
!28"

are easily checked to be independent of the position x . More-
over, the following two quantities are constants of motion:
the electron energy

W *!x ,p"!*!p"".*!x ", !29"

the canonical momentum

P y
*!x ,p"!py"a*!x ", !30"

which means that on each electron trajectory !in the phase
space", the above quantities are constant. Let us denote
f ,n ,a , j ,. , . . . the limit as * tends to zero of f *,n*, . . . . Since,
in the limit *!0, electrons are injected with zero velocity, it
is readily seen that the electron energy W and canonical
momentum P y simultaneously vanish. Consequently, the
distribution function f is concentrated on the curve !C " de-
fined by

py!x "!a!x ",

#px!x "$2!#1#.!x "$2"1"#a!x "$2.

We notice that the following identities hold on !C ":

vx!x "!
px!x "

!1#p2!x "
!

px!x "

1#.!x "
, !31"

vy!x "!
vy!x "

!1#p2!x "
!

a!x "

1#.!x "
. !32"

A consequence of the last identity is that j y!#a/(1#.)$n ,
which means

!1#."a!!a.!. !33"

Let us now define the effective potential by

/!x "!#1#.!x "$2"1"#a!x "$2. !34"

Thanks to the second equation defining !C ", which can be
written

#px!x "$2!/!x ", !35"

it is readily seen that electrons do not enter the diode unless
the effective potential / is non-negative in the vicinity of the
cathode. Therefore, we always have /"(0)&0. The limiting
case /"(0)!0 is the space-charge-limited or the Child–
Langmuir regime. In view of !25" and !26" !which still hold
in the limit *→0", this condition is equivalent to the standard
Child–Langmuir condition

d.

dx !0 "!0. !36"

Besides, !35" implies that the characteristic curves are lo-
cated in the zones where / is non-negative. Let /L be the
value of / at the anode

/L!!1#.L"2"1"aL
2 . !37"

If /L%0, electrons cannot reach the anode x!1; they are
reflected by the magnetic forces back to the cathode and the
diode is said to be magnetically insulated. This enables us to
define the Hull cutoff magnetic field, which is the relativistic
version of the critical field introduced in Ref. 11 in the non-
relativistic case:

aL
H!!.L

2#2.L.
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The diode is magnetically insulated if aL$aL
H , and is not

insulated if aL%aL
H . In dimensional variables, the Hull cut-

off magnetic field is given by

BH!
1
Lc !)L

2#
2mc2

e )L.

The aim of this paper is to give a detailed analysis of both
regimes. Let us begin by studying noninsulated diodes.

III. WEAK MAGNETIC FIELDS Bext<BH

In dimensionless variables, the applied effective poten-
tial /L!(1#.L)2"1"aL

2 is positive.

A. Derivation of the model

The approach is similar to the purely electrostatic
cases.2,3,10,5 Indeed, the effective potential takes a larger
value at the anode than at the cathode, /(1)"/(0)!/L
$0, which implies that electrons are globally accelerated
inside the diode. A natural assumption is that

'x!!0,1$ , /!x "$0. !38"

This hypothesis, which shall be discussed in Sec. V and VI,
is of primary importance for deriving the limit model. In-
deed, it prevents the characteristic curve !C " from meeting
the axis px!0 for x$0. Consequently !C " splits into two
parts which only intersect at the point !x!0, px!0, py!0"
!see Fig. 1":

!C #"!,!x ,px ,py"!!C ",px&0-,

!C ""!,!x ,px ,py"!!C ",px%0-.

Therefore, the current flows j x
" and j x

# , respectively,
carried by (C #) and (C ") do not depend on the position x .
Since no electron is injected at the anode, j x

" vanishes.
Hence

j x! j x
#!$

!C #"
vx f !x ,px ,py"dpxdpy

and the distribution function is that of a monokinetic beam
issued from the cathode x!0 with vanishing initial velocity

f !x ,P"!n!x "0!px"!/!x ""0#py"a!x "$ .

Therefore

n!x "!
j x

vx!x "
! j x

1#.!x "

!/!x "
,

j y!x "!n!x "vy!x "! j x
a!x "

!/!x "
.

Inserting these expressions into Poisson’s and Ampère’s
equations !19" and !20" gives

d2.
dx2 !x "! j x

1#.!x "

!#1#.!x "$2"1"#a!x "$2
, !39"

d2a
dx2 !x "! j x

a!x "

!#1#.!x "$2"1"#a!x "$2
, !40"

.!0 "!0, .!1 "!.L , !41"

d.

dx !0 "!0, !42"

a!0 "!0, a!1 "!aL . !43"

Let us recall that the unknowns are the electrostatic potential
., the magnetic potential a , and the current j x !which does
not depend on x": for a given j x , Eqs. !39" and !40", !41",
and !43" determine . and a while !42" is used to determine
jx . In the remainder, a solution of !39"–!43" will be denoted
by S ni; the superscript ni stands for ‘‘noninsulated’’ and
more generally we shall use this superscript for a parameter
corresponding to this model.

It is to be noticed that the whole construction of this
model depends heavily on the assumption that the effective
potential is positive. Actually, / could vanish at some points
in the diode, leading to closed trajectories and trapped par-
ticles. This point will be discussed in Sec. V.

Let us now proceed to the analytical resolution. The
strategy relies on a shooting method with 1!a"(0) and j x as
shooting parameters: Given the values of 1 and j x , solve
!39" and !40" with the Cauchy conditions

.!0 "!0, a!0 "!0, ."!0 "!0, a"!0 "!1 , !44"

and then adjust the values in order to fulfill the conditions:
.(1)!.L and a(1)!aL .

B. Resolution of the Cauchy problem

In this part we solve the system !39", !40", and !44" with
a given j x , 1. We shall follow—at least at the beginning—
the computations of Ron et al.6 and Lovelace and Ott.7 How-
ever, in our calculations the computations are not restricted
to the insulated diode case and the analytic resolution of the
models is complete. We shall, in particular, give explicit ex-
pressions for the electron sheath width. Let us now turn to
the resolution of !39", !40", and !44" and introduce, like in
Refs. 6 or 7, the new unknowns 2 and ' by

2!x "!!/!x "!!!1#."2!x ""a2!x ""1, !45"

and

1#.!x "!!22!x "#1 cosh#'!x "$ ,
!46"

a!x "!!22!x "#1 sinh#'!x "$ .

Written in terms of 2 and ', the system completely decouples
into

!2""2!
2 j x
2 " 22"

12

2 j x
2#1 # , !47"

'"!x "!
1

22!x "#1 . !48"

The above equations are obtained by simple but lengthy al-
gebraic manipulations, with the important intermediate re-
sults

!1#."a""."a!1 , !49"

2 j x2"!.""2#!a""2!12. !50"
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We first solve !47" by separation of variables. To this aim,
we distinguish two cases, depending on the fact that the
right-hand side of this equation !a second degree polyno-
mial" can vanish or not. Here we shall only summarize the
results and refer to Ref. 9 for a complete mathematical treat-
ment. Let us set 1̃!1/!j x and define the following func-
tions:

3a! 1̃ ,2"!$
0

2 1̃!4

!2" 42"
1̃2

2 4#1 # !42#1 "

d4 , !51"

5a! 1̃ ,2"!$
0

2 1̃!4

!2" 42"
1̃2

2 4#1 # d4 . !52"

These functions are defined for all 2&0 when 1̃%2. If 1̃
$2, they are defined only for 2!#0,2m$ , where

2m! 1̃ "!
1̃2"!1̃4"16

4 . !53"

Let us set in this case

3m! 1̃ "!3a#1̃ ,2m! 1̃ "$ , 5m! 1̃ "!5a#1̃ ,2m! 1̃ "$ ,
!54"

3b! 1̃ ,2"!23m! 1̃ ""3a! 1̃ ,2",
!55"

5b! 1̃ ,2"!25m! 1̃ ""5a! 1̃ ,2".

The solution of the Cauchy problem !39", !40", and !44" can
be written implicitly by means of the above-defined func-
tions.

If 1̃%2, then the solution 2(x), '(x) is defined on #0,
#6$ by

1x!5a#1̃ ,2!x "$ , '!x "!3a#1̃ ,2!x "$ . !56"

If 1̃$2, then the solution 2(x), '(x) is defined only on
the interval #0,2xm$ where

xm!
5m! 1̃ "

1
; !57"

and is implicitly given by

for 0%x%xm , 1x!5a#1̃ ,2!x "$ ,

'!x "!3a#1̃ ,2!x "$ ,
!58"

for xm%x%2xm 1x!5b#1̃ ,2!x "$ ,

'!x "!3b#1̃ ,2!x "$ .

We notice that the function 2 is symmetric with respect to
xm , and reaches its maximum at this point. The value of this
maximum is 2(xm)!2m(1̃). Note also that the current j x
appears in !56" and !58" through the parameters 1̃ and 1,
thanks to the equality 1!!j x1̃ .

C. A shooting method with two parameters

We now consider the boundary conditions !41" and !43".
If we denote

2L!!/L!!!1#.L"2"1"aL
2 , 'L!argsh" aL

!1#/L
# ,

then the shooting method consists in determining all the pa-
rameters ( j x ,1), or equivalently (1 ,1̃) such that the func-
tions given by !56" and !58" verify

2!1 "!2L , '!1 "!'L . !59"

Let us first determine 1̃ . We notice that 2L and 'L have to
satisfy one of the following relations:

'L!3a! 1̃ ,2L"

or

'L!3b! 1̃ ,2L". !60"

Case 1: 2L&1. We claim that 1̃%2. Indeed, if this is not
the case, we first deduce from !53" that the maximum value
of 2 is 2m(1̃)%1. Therefore the value 2L cannot be reached
by 2.

Since 3b is defined only for 1̃$2, we have certainly

'L!3a! 1̃ ,2L".

This identity uniquely defines the parameter 1̃ since it is
readily seen that 3a(1̃ ,2L) is an increasing function of its
first argument 1̃ and takes all positive values for 1̃ ranging
from 0 to 2.

Case 2: 2L%1. In this case, the function 3a(1̃ ,2L) is
defined only for 1̃ smaller than the critical value

1̃c!!2" 2L#
1
2L

# ,
whereas for 3b(1̃ ,2L) to be defined, 1̃ has to fulfill the
additional requirement 1̃$2. It is readily seen that, as 1̃
ranges from zero to 1̃c , 3a(1̃ ,2L) increases from 0 to
'c(2L), given by

'c!2L"!3m%!2" 2L#
1
2L

# & .
On the other hand for 1̃ increasing from 2 to 1̃c , 3b(1̃ ,2L)
decreases from infinity to 'c(2L). Thanks to this argument,
1̃ can be computed by solving

'L!3a! 1̃ ,2L" if 'L%'c!2L",

'L!3b! 1̃ ,2L" if 'L&'c!2L".

This resolution is illustrated in Fig. 2, where both cases are
represented; the values chosen for the computations are 2L
!2 and 2L!0.3.

Now that 1̃ is determined, we turn to 1. Evaluating !56"
or !58" at x!1, we have

1ni!5a! 1̃ ,2L" in the case 'L!3a! 1̃ ,2L",

1ni!5b! 1̃ ,2L" in the case 'L!3b! 1̃ ,2L".
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Next, as written above, the current flowing through the diode
is nothing but

j x
ni!" 1

1̃
# 2.

IV. THE MAGNETICALLY INSULATED DIODE Bext>BH

Since /L%0, the effective potential applied to the diode
is globally repulsive. Electrons emitted at the cathode with
zero initial velocity cannot reach the anode. They are re-
flected back to the cathode at a point x* of the diode such
that

'x!#0, x*$ , /!x "&0, and n!x "$0,
!61"

'x!!x*,1$ , /!x "%0, and f !x ,px ,py"!0.

We notice that in this case, the total current flow j x from the
cathode to the anode vanishes, which implies that our 1.5-
dimensional model is consistent with the complete Maxwell
system.

As previously noticed, the equations for the electrostatic
and magnetic potentials heavily depend on the location of the
points where the effective potential / vanishes. The most
general situation is studied in Ref. 9, and will be discussed in
Secs. V and VI. Here we shall concentrate on two important
particular cases: the quasilaminar model !see Ref. 6 or Ref.
7" where / is assumed to vanish only at the electronic sheath
edges and the laminar one !see Ref. 12", also referred to as
parapotential or Brillouin flows in the literature, where the
effective potential / is assumed to vanish throughout the
whole electronic sheath #0, x*$ .

In the quasilaminar case, electrons leave the cathode,
reach the point x*, then come back to the cathode, whereas
in the laminar case they follow the equipotentials parallel to
the Y axis, and their velocity vx along x is negligible.

Before separately studying both models, some quantities
can be computed independently of any assumption on the
zeros of / inside the sheath. First, it can be proved !see Ref.
9" that

/"!x*"!0. !62"

As in Sec. III, we set 1!a"(0) and use the variables 2, '
defined by !45" and !46" on #0,x*$ . Denote by '*, a*,...
the values of the various functions at the edge x* of the
sheath. From !62" and !48", which are still valid on #0,x*$ ,
we have

1#.*!cosh '*, a*!sinh '*,

."*!1 sinh '*, a"*!1 cosh '*.

On the other hand, the potentials are affine functions outside
the sheath. Hence

."*!
.L".*
1"x* , a"*!

aL"a*
1"x* ,

which implies

!1"x*"1 sinh '*!1#.L"cosh '*,
!63"

!1"x*"1 cosh '*!aL"sinh '*.

Dividing the first equation by the second one yields after
some rearrangements

!1#.L"cosh '*"aL sinh '*!1. !64"

This is a second degree equation in terms of exp('*) which
has at most two solutions. The requirement 0%.*%.L al-
lows one to select the unique solution

'*!ln
1#.L#aL
1#!"/L

. !65"

Inserting this formula in !63", we find after some algebraic
manipulations

FIG. 2. Nonmagnetically insulated diode: determination of 1̃ in function of the data ('L ,2L). !a" case 2L&1; !b" case 2L%1.
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1!1"x*"!!"/L. !66"

The construction of '* can also be done graphically
!Fig. 3". In the plane !U!1#. , V!a", the point (1
#.*,a*) lies on the positive quarter of hyperbola H with
equation U2"V2!1. The condition /"(x*)!0 expressed in
the (U ,V) plane means that at the point (1#.*,a*), the
curve a vs (1#.) is tangent to the hyperbola H. Moreover,
since there is no electron outside the sheath, a is an affine
function of 1#. for . larger than .*, which implies that
(1#.*,a*) is the point of the hyperbola H at which the
tangent passes through (1#.L ,aL).

A. The quasilaminar model

The effective potential verifies / is positive in the sheath
(0,x*). We deduce from the phase space represented in Fig.

4, that the currents j x
# and j x

" on the two branches of the
characteristic curve (C #) and (C ") are constant and oppo-
site. We shall denote j̄!2 j x

#!"2 j x
" .

Consequently, the distribution function reads

f !x ,px ,py"!
n!x "

2 !0#px"!/!x "$0#py"a!x "$ "

and

n!x "!
j̄#1#.!x "$

!/!x "
, j y!

j̄a!x "

!/!x "
.

Hence, the quasilaminar model amounts to solving the fol-
lowing system for the unknowns ., a , j̄ and x*:

'x!!0, x*",

d2.
dx2 !x "! j̄

1#.!x "

!#1#.!x "$2"1"#a!x "$2
,

d2a
dx2 !x "! j̄

a!x "

!#1#.!x "$2"1"#a!x "$2
,

!67 "

!68 "

'x!!x*,1",
d2.
dx2 !x "!

d2a
dx2 !x "!0, !69"

.!0 "!0, .!1 "!.L ,
d.

dx !0 "!0,

a!0 "!0, a!1 "!aL

!70 "

!71 "

!72 "

with the requirement that 7, a , and their first derivatives are
continuous at the sheath edge x*.

Inside the sheath, the system !67" and !68", is exactly
written like !39" and !40", with j x replaced by j̄ . The results
of Sec. III B can thus be adapted here. Let 1 and j̄ be given
and set 1̃!1/! j̄ . The solution of the Cauchy problem !67",

!68", and !44" associated with these data is known and given
by !56" or !58".

To solve the complete quasilaminar model, we now have
to adjust the three shooting parameters 1, j̄ , x*. The first
remark is that the effective potential / vanishes at both edges
of the sheath. Since a solution corresponding to 1̃$2 van-

FIG. 3. Case of magnetic insulation: determination of (1#.*,a*) in func-
tion of the data (8#.L ,aL).

FIG. 4. Magnetically insulated diode: phase portrait (x ,px) in the quasil-
aminar model.
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ishes only at the origin, we deduce that 1̃%2 and that
#0, x*$ is the maximum interval of existence for /: x*
!2xm(1̃) #see !57"$. To solve the quasilaminar model com-
pletely, we only need to determine the parameters 1, 1̃ , and
x*. To this aim, we first deduce from !48" and the symmetry
of 2 with respect to xm!x*/2, that '*!'(2xm)!2'(xm).
We now can compute 1̃ by solving

3m! 1̃ "!
'*
2 ,

where '* is given by !65" and 3m is defined by !54". To
define 1 and x*, we solve !66" together with

1x*
2 !5m! 1̃ ",

where 5m is defined in !54".
To summarize Sec. IV A, the solution S QL

i of the quasi-
laminar case of magnetic insulation in the Child–Langmuir
regime is determined by the following parameters:

1QL
i !25m!3m

"1" '*
2 ##!"/L, !73"

xQL*,i!
25m!3m

"1" '*
2 #

25m!3m
"1" '*

2 ##!"/L

, !74"

j̄ QL
i !" 25m!3m

"1" '*
2 ##!"/L

3m
"1" '*

2 # # 2

, !75"

with '* given by !65" and /L by !37".

B. The laminar model

This model relies on the assumption that the effective
potential / vanishes on the sheath #0, x*$ and is strictly
negative outside the sheath. The current and charge densities
vanish outside the sheath. Thanks to !35", the x component
of the momentum vanishes on the curve C , so the currents
j x

# and j x
" vanish everywhere in the diode. However the

current j y(x) and the density of electrons n(x) take nonzero
values on (0, x*). Indeed, if n and j y vanish identically, then
with the Poisson and Ampère equations the potentials would
be linear, which is not compatible with the assumption /
90 on (0, x*).

Consequently, the electrons only move on lines parallel
to Y. To compute the charge density in the sheath, the rela-
tion j x!n .vx is of no use since j x!vx!0. We shall avoid
this difficulty by using Eq. !33". The model is then written

for x !#0, x*$ ,
#1#.!x "$2"#a!x "$2!1,
!1#."a!!a.!,

!76"
!33 "

for x!#x*,1$ ,
.!!x "!a!!x "!0,
.!0 "!0, .!1 "!.L ,
a!0 "!0, a!1 "!aL

!77"

!78"

with the continuity requirement of a , ., and their derivatives
at the sheath edge x*. This model is much simpler to solve
than the previous ones. Indeed, we have by !76", 1#.(x)
!cosh#'(x)$ and a(x)!sinh#'(x)$ on #0,x*$ . Moreover,
!48" leads to '(x)!1x , thus '*!1x*. From this relation
and !65", !66", one deduces easily the values of the magnetic
field 1 at the cathode and the width x* of the sheath.

As a conclusion, the solution S L
i of the laminar model

is given by

1L
i !'*#!"/L, !79"

xL*,i!
'*

'*#!"/L
, !80"

with '* given by !65" and /L by !37". The density, current
along y and distribution function of the electrons, for x
!#0,x*$ are

n!x "!12 cosh!1x ", j y!x "!12 sinh!1x ",

f !x ,px ,py"!n!x "0!px"0#py"sinh!1x "$ .

To our knowledge, formulas !79" and !80" for the mag-
netic field at the cathode and for the width of the sheath have
never appeared in the literature on magnetic insulation.

V. PARASITIC SOLUTIONS

We have seen that the solutions S ni, S QL
i , and S L

i

depend on some assumptions on the zeros of the effective
potential /!(1#.)2"a2"1 inside the electronic sheath.
Unfortunately, in many cases,13,14 it is not clear whether
these hypotheses are satisfied or not. When these hypotheses
are not satisfied, a complete set of limit problems !which we
call the parasitic models" is obtained. We refer to Ref. 9
where a detailed mathematical analysis of these problems
can be found, and shall only summarize the results.

A. Nonmagnetically insulated diode

One cannot guarantee a priori that the effective potential
/ does not vanish inside the diode. Actually, there may ap-
pear some virtual cathodes located at the points xk$0 where
/(xk)!0. We show in Ref. 9 that the number of virtual

FIG. 5. Phase portrait for the parasitic model P1.
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cathodes is finite and cannot exceed a certain value depend-
ing on the relative strength of the applied magnetic field. In
particular, no virtual cathode can appear if

" 1#
e)L

mc2 # 2" e2AL
2

m2c2$2.

Moreover, the number and the location of the virtual cath-
odes are not known a priori, but the solution can be con-
structed in a unique way once the location of the virtual
cathodes is given. The formulas giving the solutions in this
case and in the parasitic cases of magnetic insulation being
somewhat lengthy, we skip them and refer to Ref. 9 !these
formulas are, however, used for the numerical tests presented
in the Sec. VI.

B. Magnetically insulated diode

So far, we have distinguished two cases. The quasilami-
nar case where the effective potential vanishes only at the
sheath edges, and the laminar case where the effective po-
tential vanishes on the whole sheath. Actually, all intermedi-
ate solutions may exist. We call them parasitic solutions. The
main features of these solutions is that a finite or an infinite
number of virtual cathodes can exist and the effective poten-
tial can even vanish on whole intervals inside the electronic
sheath. We show in Ref. 9 that the distribution of zeros of
the effective potential inside #0,x*$ uniquely determines the
length x* of the sheath, and the solution (. ,a). To illustrate
this property we present two examples, represented in Figs. 5
and 6. In the first one, denoted P1, we only prescribe the fact
that / vanishes at the midpoint of the sheath. In the second
one, / only vanishes on the interval #x*/2,3x*/4$ . This in-
formation is sufficient to construct the solution !see Ref. 9"
and in particular to determine the length x* of the sheath.

VI. NUMERICS AND DISCUSSION
A. Numerical results

In this part, we represent the characteristic parameters of
the previously defined models: S ni for weak magnetic
fields, S QL

i , S L
i , S P1

i , and S P2
i for strong magnetic

fields. No parasitic solutions has been represented here in the
noninsulated case. In Figs. 7, 8, 9, 11, the applied electric
potential is fixed and all the computed quantities are obtained
by varying the dimensionless magnetic potential aL . The
electric potential chosen for the computations is .L!2, or
)L!2 mc2/e .

In Fig. 7, the dimensionless magnetic field 1 at the cath-
ode has been represented. The dashed line is the applied

FIG. 6. Phase portrait for the parasitic model P2.

FIG. 7. !a" Magnetic field at the cathode in function of the applied magnetic field (.L!2); !b" Details of !a".
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magnetic field. Thus it appears on these curves, but also on
the equations, that the magnetic field at the cathode is less
than the applied magnetic field. Moreover, the detailed fig-
ure, zoomed in the neighborhood of the cutoff point aL

H ,
shows that the curve 1QL

i (aL) is the only one that extends
continuously 1ni(aL) at the point aL

H . For aL$aL
H , and for

both parasitic models, there holds

1L
i %1P

i %1QL
i .

Hence, the relative uncertainty on the magnetic field at the
cathode is bounded by Err(1)!(1QL

i "1L
i )/1L

i . This uncer-
tainty appears to be very small when aL(aL

H . Its maximal
value maxaL$aL

H#Err(1)$ has been represented as a function
of the applied electric potential .L in Fig. 10 below.

Figure 8 shows the transmitted current j x
ni in the nonin-

sulated case aL%aL
H , and the current jQL

# ,i of the electrons
flowing with positive velocities, for aL$aL

H , and in the
quasilaminar model. Note that these curves have the same
shape as the ones obtained for a cold and nonrelativistic
model.15 When no magnetic field is applied, i.e., when aL
!0, then j x

ni is the relativistic electrostatic Child–Langmuir
current j0

CL . When aL increases, the current decreases from
j0
CL to a certain value j x

ni(aL
H)! jH$0. Next, there is a gap as

we pass to aL$aL
H and jQL

# ,i!1/2jH.
For strong magnetic fields, the length of the sheath x*

has been computed for models studied in Sec. IV and is
represented in Fig. 9. Moreover, for both parasitic models,
the corresponding xP*,i is bounded by

xL*,i%xP*,i%xQL*,i .

The curves xL*,i(aL) and xQL*,i(aL) being very close to one
another did not represent any parasitic model in Fig. 7. The
relative uncertainty

max
aL$aL

H
" xQL*,i"xL*,i

xL*,i
#

is plotted in Fig. 10 as a function of .L : this error appears to
be very small.

Finally, we define an additional quantity of interest: the
total drift current along the y coordinate, that can be com-
puted thanks to !20":

Iy!$
0

1
j y!x "dx!a"!1 ""a"!0 "!1!cosh '*"1 ".

This quantity is plotted in Fig. 11, for the main three models.
This current is maximal at the cutoff value aL!aL

H .

FIG. 9. Edge of the electron sheath x* in function of the applied magnetic
field (.L!2).

FIG. 10. Maximum relative uncertainty in x* and 1 in function of the
applied electric potential.

FIG. 8. Currents along x in function of the applied magnetic field (.L
!2).

1531Phys. Plasmas, Vol. 5, No. 5, May 1998 Ben Abdallah, Degond, and Méhats
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B. Stability of parasitic solutions

We have seen that the most general limit model of !18"–
!26" as *→0 admits an infinite multiplicity of solutions, and
we numerically computed some of them. In the magnetically
insulated case, these results show little variations of the val-
ues of x* and of the magnetic field 1, between the various
models.

However, the multiplicity of models is not satisfactory
and in the next paragraphs our aim is to give stability argu-
ments that indicate in what sense some solutions are more
physically acceptable than others. In Sec. VI B we study the
influence of a small absorption term in the Vlasov equation.
We then investigate geometrical effects. It is striking that the
analysis eliminates a large number of parasitic solutions and
sometimes all of them.

1. Presence of an absorption term

The previously considered models were obtained by
passing to the limit *→0 in the Vlasov–Maxwell system.
Let us introduce an absorption term in the Vlasov equation,
i.e., we add a term : f with :$0 in the left-hand side of !18".
Then pass to the limit *→0 and finally make the limit :→0.
We shall show that this operation eliminates all the parasitic
solutions in the insulated and noninsulated cases. Moreover,
the only stable solution in the insulated case is the quasil-
aminar solution.

Let us first show that if the effective potential / vanishes
at two points x0%x1 , then the derivative /"(x1) is negative.

We choose these points such that /$0 on (x0 ,x1). No-
tice that / cannot vanish on a whole interval. Indeed, the j x
component of the current is no more constant but satisfies

d jx
dx !x "!":n!x ". !81"

Since j x vanishes at the points where / vanishes, we deduce
that if /!0 on an interval, the charge density n !and the j y
component" would also vanish. This is not possible since
vacuum regions are characterized by /%0.

Since / is positive on (x0 ,x1), then we can write

d2.
dx2 !x "!# j x

#!x "" j x
"!x "$

1#.!x "

!/!x "
,

d2a
dx2 !x "!# j x

#!x "" j x
"!x "$ ,

where j x
#$0 and j x

"%0 are the current fluxes of particles
flowing, respectively, to the anode and to the cathode. These
flows are no longer constant but satisfy the following differ-
ential equations:

d jx
)

dx !*:
j x

)!1#."

!/
.

Equation !47", expressed in terms of / and modified in order
to take into account the absorption term :, turns into

" d/

dx !x " # 2"" d/

dx !x0" # 2
!"412/!x "#8#1#/!x "$!/!x "! j x

#" j x
""!x "

#8:#1#/!x "$$
x0

x
#1#.!y "$ j x!y "dy ,

where j x! j x
## j x

" is the total current. At x!x1 , we have

" d/

dx !x1" # 2"" d/

dx !x0" # 2!8:$
x0

x1
#1#.!y "$ j x!y "dy .

The integral on the right-hand side is strictly positive since j x
vanishes only in vacuum regions /%0. Consequently, we
have !/"(x1)!$0, which yields /"(x1)%0.

Let us now show that parasitic solutions do not exist in
the noninsulated case: If they do, the effective potential
would vanish at a point x1 such that the derivative /"(x1) is
negative. Hence / takes negative values. The mathematical
analysis shows that if the effective potential is negative at
some point, it is negative on the whole interval between this
point and the anode x!1. This is clearly impossible since it
violates the boundary condition /L$0.

Let us now turn to the magnetically insulated diode. For
the same reason as mentioned above x0 has to be equal to 0
and x1 is nothing but the sheath edge x*, which proves that
the effective potential is positive in the sheath which corre-
sponds to the quasilaminar solution.

From the existing literature on magnetic insulation, we
could not get objective reasons to choose the quasilaminar
model or the laminar one. Our stability analysis might give
some insight into this topic since it shows that the laminar
model is unstable under dissipation effects. Of course, one
should be careful about this conclusion since the analysis is
done in the stationary case. For instance, recent numerical
simulations16 indicate that some nonstationary phenomena

FIG. 11. Total drift-current along y in function of the applied magnetic field
(.L!2).
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such as turbulence should be taken into account. However,
the extension to the time-dependent case seems out of reach
for the moment.

2. Geometrical effects
Another factor that can reduce the multiplicity of steady

solutions is the geometry of the diode.17 Consider a cylindri-
cally symmetric diode, submitted to applied electric and
magnetic fields. The complete study of the model will not be
done here. Inspired by Ref. 3, we shall first write a singular
perturbation problem, then derive formally the limit model as
*→0. Our aim here is only to analyze the information on its
solutions that we can get from a first integral argument like
in Sec. VI B 1.

The diode consists of two coaxial electrodes. The cath-
ode emits electrons and is either outside or inside the anode.
The applied electric field is radial E!E(r)er and the mag-
netic field is azimuthal B!B(r)e/ #the cylindrical coordi-
nates are (r ,/ ,z)$. The distribution function of the particles
is f (r ,pr ,p/ ,pz), and the self-consistent fields can be writ-
ten as gradients of the potentials ., a!aez:

E!r "!"
d.!r "
dr , B!r "!"

da
dr .

The system is scaled following Ref. 3 and the dimensionless
singular perturbation system corresponding to the Child–
Langmuir asymptotics is written

vr
( f *

(r #" v/p/

r #
d.*

dr "vz
da*

dr # ( f *

(pr
"

v/pr
r

( f *

(p/

#vr
da*

dr
( f *

(pz
!0, !82"

1
r
d
dr " r d.*

dr #!n*!r "!$
R3
f *!r ,pr ,p/ ,pz"dp, !83"

1
r
d
dr " r da*

dr #! j z
*!r "!$

R3
vz f *!r ,pr ,p/ ,pz"dp, !84"

f *!1,p"!g*!p"!
1
*4

g" p* # , sign!;"1 "pr$0, !85"

f *!; ,p"!0, sign!;"1 "pr%0, !86"

.*!1 "!0, .*!;"!.; , a*!1 "!0, a*!;"!a; , !87"

where ; is the diode aspect ratio, i.e., the ratio between the
anode and the cathode radii.

The invariants along the characteristics can be deduced
from !82" and take the same form as !29" and !30":

W !!1#p2"1". , P /!rp/ , P z!pz"a .

They allow one to derive the formal limit model, as in
Sec. II, by writing that these invariants vanish for the elec-
trons originating from the cathode with zero initial velocity.
This first leads to the introduction of an effective potential,
similar to the function /(x) in the case of the plane diode,
and that we denote here 4(r)!#1#.(r)$2"#a(r)$2"1. As
for the plane diode the value of this potential at the anode
gives a cutoff condition, separating the problem into two

cases, the magnetically insulated diode and the noninsulated
one. The critical dimensionless value is 4;!(1#.;)2"a;

2

"1!0. Moreover, one can find a priori the same multiplic-
ity of models, depending on the distribution of the zeros of
4(r) inside the sheath.

Consider now a region (r0 ,r1), such that 4(r0)
!4(r1)!0 and 4$0 on (r0 ,r1). The quantities

ir
#!r$

pr!0

pr!#6$
R2

vr f dprdp/dpz ,

ir
"!r$

pr!"6

pr!0 $
R2

vr f dprdp/dpz

remain constant on this interval and if we set <̄!ir
#"ir

" then
the limit model reads, on (r0 ,r1),

d
dr " r d.

dr #!rn!r "! <̄
1#.!r "

!#1#.!r "$2"1"#a!r "$2
,

!88"

d
dr " r dadr #!r jz!r "! <̄

a!r "
!#1#.!r "$2"1"#a!r "$2

.

!89"
As in Ref. 3, set x!= log(r), x0!= log(r0), x1!= log(r1),
where =!sign(;"1). Next, if we denote by U(x)!1
#.(r), W(x)!a(r), >(x)!4(r)!#U(x)$2"#V(x)$2"1,
the system !88" and !89" can be rewritten

d2U
dx2 !x "! <̄e=x U!x "

!>!x "
, !90"

d2W
dx2 !x "! <̄e=x W!x "

!>!x "
. !91"

From these equations, a prime integral can be calculated and
we obtain

" d>

dx !x " # 2"" d>

dx !x0" # 2
!"412>!x "#8 <̄!1#>!x ""!>!x "e=x"8=<̄

&!1#>!x ""$
x0

x
!>!y "e=ydy .

Besides, we have (d>/dx)(x0)!0, since either x0!0 and
this equality is nothing but the Child–Langmuir condition, or
x0$0 and (d>/dx)(x0)$0 would lead to the negativity of
> for x smaller and close enough to x0 . This leads to a
contradiction since, if the effective potential is negative at
some point, it stays negative from this point to the anode. We
then have

" d>

dx !x1" # 2!"8=<̄$
x0

x1!>!y "e=ydy . !92"

Therefore, for the noninsulated diode, no parasitic model can
be a solution of the limit model of !82"–!87". Indeed, in such
a model, the effective potential > would be non-negative for
x!#0,!log(;)!$, thus (d>/dx)(x1)!0, which is incompatible
with !92".
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For the insulated diode two cases have to be considered.
If the cathode is surrounded by the anode, then =!#1 and
!92" can never hold: The laminar model S L

i is the only
possible stationary space-charge-limited model.

If the anode is inside the cathode (=!"1), !92" implies

d>

dx !x1"%0.

Thus, the point r1 must be the edge of the sheath r*. This
fact also limits sizeably the multiplicity of possible limit
models. Indeed, the only possible solutions are, the laminar
model S L

i , the quasilaminar model S QL
i , and some para-

sitic models with the following structure: a laminar region
(1,r0) where 4 vanishes, then a quasilaminar region (r0 ,r*)
where 4$0, then the insulated region (r*,;) without elec-
trons, where 4%0.

The approach that we adopted in this analysis follows
closely the work by Swegle.17 However, our analysis departs
from a more general situation. Indeed, in Ref. 17, the aim
was to prove that a quasilaminar solution cannot exist,
whereas we additionally prove that the whole set of parasitic
solutions does not exist.
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