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Abstract. This work is a generalization of the results previously obtained in
[17] in a one-dimensional setting: we revisit the problem of the minimization
of the quantum free energy (entropy + energy) under local constraints (mo-
ments) and prove the existence of minimizers in various configurations. While
[17] addressed the 1D case on bounded domains, we treat in the present paper
the multi-dimensional case as well as unbounded domains and non-linear inter-
actions as Hartree/Hartree-Fock. Moreover, whereas [17] dealt with the first
moment only, namely the charge density, we extend the results to the second
moment, the current density.

1. Introduction

The problem of moment realizability in the quantum framework that we analyze
in this paper is an essential ingredient of the recent theory developed by Degond
and Ringhofer [9], see also [6, 8], on the derivation of quantum hydrodynamics
models from first principles. Their approach consists in transposing Levermore’s [15]
moment closure strategy by entropy minimization to the quantum picture. Roughly
speaking, starting from the quantum Liouville equation for a density operator ̺,
they obtain an unclosed cascade of equations on moments of ̺ that is closed by a
minimization of the quantum free energy. In doing so, many different models can
be obtained depending on the configuration or the chosen asymptotics: Quantum
Drift-Diffusion, Quantum Energy-Transport, or also Quantum Navier-Stokes, see
[3, 4, 5, 6, 7, 8, 12, 13] for more precisions.

The mathematical justification of this theory based on entropy minimization has
yet to be done. The first step towards this goal is the analysis of the quantum mo-
ment problem that we started in [17] and pursue in this paper. The classical version
of the moment realizability problem with applications to kinetic equations is well-
known: in the case of three moments (density, current and energy), the associated
local equilibria are the classical Maxwellian and the obtained hydrodynamic model
is the Euler equation ; for higher moments, the question of moment realizability
was investigated in [14]. In the quantum setting, physical situations involving min-
imization of the free energy have already been widely addressed in the literature,
particularly for the study of the stability of matter, see for instance [16, 10, 11]
and the references therein. While the latter models involve global constraints, for
instance the total number of particles in the system, the moment problem we con-
sider here involves local constraints. In other words, focusing on the first moment
only, i.e. the density n(x), we fix the local value of the density at a physical point
x rather than the total number of particles. This has several consequences. First of
all, the minimization problem, in particular the characterization of the minimizer,
becomes considerably more difficult in that the Lagrange parameters associated to
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the constraints are not constants functions any longer as in the case of global con-
straints but functions of the position. Devising an appropriate equation for such
Lagrange parameters and characterizing their regularity is a delicate task that has
found partial answers in a one-dimensional setting only, see [17]. The question of
the characterization for the multi-dimensional case is an open problem. The second
consequence is that when prescribing local constraints, which are therefore stronger
than global constraints, some additional information is added into the minimization
problem. As we will see below, this allows us to show that, in some configurations,
the free energy admits minimizers under local constraints, while it does not under
global constraints (the free energy is not bounded from below in such a case while
it is for local constraints, see [11, 16]). The problem we have in mind is the mini-
mization of a quantum free energy involving a Von Neumann entropy term (or also
called Boltzmann entropy) of the form Tr(̺ log ̺) for a density operator ̺. The
consequence of Theorems 2.1 and 4.3 proved in this article is the proper definition
of the quantum Maxwellian used in [3, 4, 7, 12].

The results we present in this paper generalize that of [17] in various aspects: not
only we treat multi-dimensional problems, while [17] addresses the one-dimensional
case only, but we also extend our previous results to unbounded domains. Besides,
the theory of Degond and Ringhofer essentially considers the three first moments,
namely the density, the current and the energy. We are able to treat the density and
current constraints only and this is a consequence of the compactness method we are
using for the proofs. There is enough compactness to tackle the first two constraints,
but not enough for the last one, the energy. Moreover, non-linear systems as Hartree
or Hartree-Fock systems are also considered. Our results concern the existence (and
uniqueness) of minimizers, and not their characterization. As previously mentioned,
the analysis of the Lagrange parameters is difficult and so far only a one-dimensional
theory is available, see [17].

The paper is structured as follows: in section 2, we introduce the mathematical
framework and state our main result in Theorem 2.1. For the sake of clarity of
the exposition, we present here the most significant result, leaving the most general
cases as extensions. Theorem 2.1 provides existence and uniqueness of minimizers
in R

d, d ≥ 1, for the quantum free energy with Boltzmann (or Fermi-Dirac) entropy
under a local constraint of density. The proof of the theorem is carried out in section
3. The extensions of Theorem 2.1 are presented in section 4: we treat more general
entropies, bounded domains, non-linear interactions as Hartree/Hartree-Fock and
finally the second order constraint.

2. Setting of the problem and main result

As described in the introduction, we will consider the problem of minimizing a
free energy functional defined on density matrices by

F (̺) = E(̺) + TS(̺)

under the constraint that the density of charge n̺ associated to ̺ is a given function
n(x). Before stating our main theorem, we successively define the functional frame-
work for density matrices, the energy functional E(̺) and the entropy functional
S(̺).
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Let us define the following space of operators on L2(Rd), d ∈ N:

E =
{
̺ ∈ J1, ̺ = ̺∗ and

√
−∆|̺|

√
−∆ ∈ J1

}
,

where J1 denotes the space of trace-class operators. This space E is a Banach space
endowed with the norm

‖̺‖E = Tr |̺|+Tr(
√
−∆|̺|

√
−∆).

The energy space will be the following closed convex subspace of E :

E+ = {̺ ∈ E : 0 ≤ ̺ ≤ 1} .
Consider now a density matrix ̺ ∈ E+, with the spectral decomposition

̺ =
∑

i∈N∗

λi |ψi〉 〈ψi| ,

the density of charge n̺ associated to ̺ is defined by

n̺ =
∑

i∈N∗

λi|ψi|2. (2.1)

It can also be characterized by the weak formulation∫

Rd

n̺ φdx = Tr(̺φ), ∀φ ∈ L∞(Rd), (2.2)

where, in the right-hand side, φ means the operator of multiplication by φ.

The kinetic energy of a density matrix reads

E(̺) = Tr(
√
−∆̺

√
−∆) =

∑

i∈N∗

λi‖∇ψi‖2L2 (2.3)

and its entropy is defined by

S(̺) = Tr (β(̺)) , (2.4)

where β is either the Boltzmann entropy β(̺) = ̺ log ̺ or the Fermi-Dirac entropy
β(̺) = ̺ log ̺+ (1− ̺) log(1− ̺); we will set

β(̺) = ̺ log ̺+ ε(1− ̺) log(1− ̺), with ε ∈ {0, 1}. (2.5)

More general models will be treated as extensions in Section 4, where non linear
energies as well as other entropies are considered.

Let us now discuss our assumptions on the given density n(x) ≥ 0. Since Tr ̺ =∫
n̺(x)dx, in order to deal with density matrices of trace one, we will assume that∫
n(x)dx = 1. Moreover, from the definitions (2.1) and (2.3), and using the Cauchy-

Schwarz inequality, one obtains

‖∇√
n̺‖2L2 ≤ E(̺).

We will thus also assume that
√
n belongs to H1(Rd). Nevertheless, these assump-

tions on n are still not sufficient. Indeed, there exist density matrices of finite energy
̺ ∈ E+ with entropy S(̺) equal to −∞. Hence, without additional assumption on
the density n, our constrained minimization problem may be ill-posed. To avoid
this problem, it will be sufficient to assume that n log n belongs to L1(Rd). Indeed,
the following crucial inequality is proved in [10]:

E(̺) +
∑

i∈N∗

λi log λi ≥
∫

Rd

n̺(x) log n̺(x)dx+
d

2
log(4π)

∫

Rd

n̺(x)dx. (2.6)



4 F. MÉHATS AND O. PINAUD

This inequality, which can be seen as a logarithmic Sobolev inequality for systems,
ensures that S(̺) =

∑
i∈N∗ β(λi) is bounded from below as soon as nρ log n̺ belongs

to L1 (note that, as λ→ 0, we have β(λ) ∼ λ log λ).

Our main result is the following theorem.

Theorem 2.1. Consider a density n(x) ≥ 0 defined a.e. on R
d such that

∫

Rd

n(x)dx = 1, n log n ∈ L1(Rd),
√
n ∈ H1(Rd). (2.7)

Then the following minimization problem with constraint:

minF (̺) for ̺ ∈ E+ such that n̺ = n (2.8)

where

F (̺) = E(̺) + TS(̺), T > 0, (2.9)

E, S being defined by (2.3), (2.4), (2.5), is attained for a unique density operator.

Theorem 2.1 is extended in section 4 to more general frameworks: other types
of entropies (like C1), bounded domains, non-linear interactions and the current
density constraint. Let us point out that the hypothesis that n log n ∈ L1(Rd) is
crucial for the theorem. Indeed, when the constraint is global, i.e. when only

∫
ndx

is prescribed, the problem is known to be ill-posed in the sense that the functional
does not admit any minimizer since it is not bounded from below [16]. It is the fact
that n is prescribed locally that allows us to assume that n log n ∈ L1(Rd) and then
to bound the free energy from below and prove the existence of minimizers.

The proof essentially relies on compactness arguments. The main difference with
the method of [17] is the fact that since the problem is now posed on an unbounded
domain, the Laplacian −∆ does not have a compact resolvent anymore. This com-
pactness property of the resolvent was extensively used in [17] to prove for instance
the continuity of the entropy term. Here, the absence of compactness is compensated
by the fact that we prescribe n log n ∈ L1(Rd), and together with the logarithmic
Sobolev inequality proved in (2.6) coupled to a Jensen inequality from [2], this allows
us to obtain that the entropy is continuous.

3. Compactness of minimizing sequences

This section is devoted to the proof of our main Theorem 2.1. We denote

A = {̺ ∈ E+ such that n̺ = n} .

Step 1: A is not empty. Consider the L2 projector on
√
n defined by

σ =
∣∣√n

〉 〈√
n
∣∣ .

We have

nσ = n, E(σ) =
∥∥∇

√
n
∥∥2
L2 < +∞,

thus σ ∈ A. This proves that the set A is not empty.
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Step 2: the free energy F is bounded from below on A. The following in-
equality is proved in [10] after an optimization of the logarithmic Sobolev inequality
(2.6) under a scaling preserving the L2 norm: for all ̺, we have

∫

Rd

n̺ log n̺dx ≤
∑

i∈N∗

λi log λi +
d

2
log

(
e

2πd

E(̺)

Tr(̺)

)
Tr(̺), (3.1)

where (λi)i∈N∗ denotes the nonincreasing sequence of eigenvalues of ̺. Therefore,
since by assumption we have n log n ∈ L1 and

∫
n(x)dx = 1, we deduce that, for all

̺ ∈ A, we have ∑

i∈N∗

λi log λi ≥ −C(n)− d

2
log (E(̺)) , (3.2)

where the constant C(n) ≥ 0 only depends on n.
Let us bound the second part of the entropy in the case ε = 1 in (2.5): the term∑
i∈N∗(1− λi) log(1− λi). For all λ ∈ (0, 1], one has

−λ ≤ (1− λ) log(1− λ) ≤ 0,

thus ∑

i∈N∗

(1− λi) log(1− λi) ≥ −Tr(̺). (3.3)

Hence, from (3.2) and (3.3), one deduces that for all ̺ ∈ A, we have

F (̺) = E(̺) + TS(̺) ≥ E(̺)− TC(n)− dT

2
log (E(̺))− εT (3.4)

≥ min
e∈R∗

+

(
e− TC(n)− dT

2
log (e)− εT

)
=: −C ′(n).

The free energy is thus bounded from below on A.

From Step 1 and Step 2, the infimum of F on A is well-defined and is not −∞.
From now on, we consider a minimizing sequence (̺k)k∈N, i.e. a sequence satisfying
̺k ∈ A and

lim
k→+∞

F (̺k) = inf
̺∈A

F (̺). (3.5)

Step 3: uniform bound and first convergence result. Let us prove that the
minimizing sequence (̺k)k∈N is bounded in E . Since ̺k ∈ A, we already have

‖̺k‖J1
= Tr(̺k) =

∫

Rd

n(x)dx < +∞.

Moreover, from (3.5), we have

sup
k∈N∗

F (̺k) < +∞.

Hence, the inequality (3.4) yields

sup
k∈N∗

E(̺k) < +∞.

We have then
sup
k∈N∗

‖̺k‖E < +∞.

Since (̺k)k∈N is a bounded sequence of E , and following for instance the arguments
of [17], there exists ̺ ∈ E+ such that, up to extraction of a subsequence, ̺k and

(1 − ∆)1/2̺k(1 − ∆)1/2 converge in the J1 weak-∗ topology respectively to ̺ and
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(1 − ∆)1/2̺(1 −∆)1/2 as k → +∞. This means that, for all compact operator K
on L2(Rd) we have

Tr(K̺k) → Tr(K̺), Tr(K(1−∆)1/2̺k(1−∆)1/2) → Tr(K(1−∆)1/2̺(1−∆)1/2)
(3.6)

as k → +∞. Moreover, we have

Tr(1−∆)1/2̺(1−∆)1/2) ≤ lim inf
k→+∞

Tr((1−∆)1/2̺k(1−∆)1/2). (3.7)

Step 4: ̺ satisfies the constraint. Let us prove the convergence of ̺k in the
weak J1 topology, i.e. that for all bounded operator σ ∈ L(L2(Rd)),

Tr(σ̺k) → Tr(σ̺) as k → +∞. (3.8)

To show that no loss of mass occurs at the infinity, we will use in a crucial way the
fact that the density of ̺k is a fixed L1 function n(x).

Let us introduce a truncation function χ with values in [0, 1], such that χ ≡ 1
on the centered ball of radius 1 and χ ≡ 0 outside the centered ball or radius
2. We denote χR(x) = χ(x/R). Identifying the function χR and the operator of
multiplication by χR, we write

Tr(σ̺k) = Tr(σχR̺k) + Tr(σ(1 − χR)̺k)

= Tr((1−∆)−1/2σχR(1−∆)−1/2(1−∆)1/2̺k(1−∆)1/2)

+Tr(σ(1 − χR)̺k) (3.9)

From Sobolev embeddings on compact domains, one deduces that, for all R > 0, the
operator χR(1−∆)−1/2 is compact on L2(Rd). Moreover, the operators (1−∆)−1/2

and σ are bounded. Hence, by composition, the operator K = (1−∆)−1/2σχR(1−
∆)−1/2 is compact and (3.6) yields, for all R > 0,

lim
k→+∞

Tr((1−∆)−1/2σχR(1−∆)−1/2(1−∆)1/2̺k(1−∆)1/2) =

= Tr((1−∆)−1/2σχR(1−∆)−1/2(1−∆)1/2̺(1−∆)1/2) = Tr(σχR̺). (3.10)

Consider now the last term in (3.9) and let us show that no mass can be lost at
the infinity. Denote by σ(x, y) the integral kernel of σ and by (λk,i, ψk,i)i∈N∗ the
spectral elements of ̺k. Notice that σ ∈ L2(R3 × R

3). By using Cauchy-Schwarz
inequalities, we get

Tr(σ(1− χR)̺k) =
∑

i∈N∗

λk,i

∫

R3

∫

R3

σ(x, y)(1 − χR(y))ψk,i(y)ψk,i(x)dxdy

≤
∑

i∈N∗

λk,i‖σ‖L2‖(1 − χR)ψk,i‖L2‖ψk,i‖L2

≤ ‖σ‖L2

(
∑

i∈N∗

λk,i

)1/2(∑

i∈N∗

λk,i

∫

R3

(1 − χR(x))|ψk,i(x)|2dx
)1/2

= ‖σ‖L2

(∫

R3

(1− χR(x))n(x)dx

)1/2

where we used that ̺k ∈ A, i.e. that Tr(̺k) = 1 and that n̺ = n. From this last
estimate and by dominated convergence, since n belongs to L1, one deduces that

lim
R→+∞

sup
k∈N

Tr(σ(1− χR)̺k) = 0. (3.11)
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Finally, (3.9), (3.10) and (3.11) yield (3.8). This implies in particular that n̺ = n.
To see this fact, use the characterization (2.2) of n̺ and choose σ as the multipli-
cation operator by the function φ in (3.8). This means that ̺ belongs to A.

Step 5: strong convergence of ̺k. From the previous step, we know that ̺k con-
verges to ̺ weakly in J1, which implies the weak operator convergence. Moreover,
since these operators are positive, we have the convergence of the norms:

‖̺k‖J1
= Tr(̺k) = 1 = Tr(̺) = ‖̺‖J1

.

Hence, the following lemma from [19] shows that the convergence holds in the strong
J1 topology:

lim
k→+∞

‖̺k − ̺‖J1
= 0. (3.12)

Lemma 3.1 (Theorem 2.21 and addendum H of [19]). Suppose that Ak → A weakly

in the sense of operators and that ‖Ak‖J1
→ ‖A‖J1

. Then ‖Ak −A‖J1
→ 0.

We will now prove the convergence of the entropy:

Tr(β(̺)) = lim
k→+∞

Tr(β(̺k)). (3.13)

Note that this result cannot be simply deduced by weak convergence and semi-
continuity, since β is negative. Let us decompose the entropy into the sum of a
singular and a regular (near 0) part:

β = βs + βr with βs(λ) = λ log λ− λ, βr(λ) = λ+ ε(1 − λ) log(1− λ).

From the J1 convergence of ̺k, it is easy to prove the convergence of the regular
part:

Tr(βr(̺)) = lim
k→+∞

Tr(βr(̺k)), (3.14)

by combining two facts. First, the convergence of ̺k to ̺ in the J1 norm implies the
convergence of the eigenvalues, see Lemma A.2 in [17]: if we denote by (λk,i, ψk,i)i∈N∗

the nonincreasing sequence of eigenvalues and the associated eigenfunctions of ̺k,
and by (λi, ψi)i∈N∗ the (nonincreasing) eigenvalues and eigenfunctions of ̺, we have

∀i ∈ N
∗, λk,i → λi. (3.15)

Since the function βr is continuous, this implies that

∀N ∈ N
∗, lim

k→+∞

∑

i<N

|βr(λk,i)− βr(λi)| = 0. (3.16)

Second, we have the bound

|βr(λ)| ≤ C|λ|. (3.17)

From (3.15) and from
∑

i∈N∗ λk,i =
∑

i∈N∗ λi = 1, one deduces that

lim
N→+∞

sup
k∈N∗

∑

i≥N

λk,i = 0 and lim
N→+∞

∑

i≥N

λi = 0,

which implies, by (3.17), that

lim
N→+∞

sup
k∈N∗

∑

i≥N

|βr(λk,i)| = 0 and lim
N→+∞

∑

i≥N

|βr(λi)| = 0. (3.18)

By combining (3.16) and (3.18), one gets (3.14).
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Step 6: convergence of the entropy, part 1. In the next two steps, we prove
the convergence of the singular part:

Tr(βs(̺)) = lim
k→+∞

Tr(βs(̺k)) (3.19)

where we recall that βs(λ) = λ log λ−λ. We shall use a truncation method inspired
from [11]. Let us introduce two truncation functions χ and ξ with values in [0, 1],
such that χ2 + ξ2 = 1, χ ≡ 1 on the centered ball of radius 1 and χ ≡ 0 outside
the centered ball or radius 2. We denote χR(x) = χ(x/R) and ξR(x) = ξ(x/R) for
R ≥ 1. We will use the following "Jensen inequality for traces", taken from [2]:

Lemma 3.2 ([2]). Let β be a continuous and convex function defined on [0, 1] with

β(0) = 0. Let ̺ ∈ E+ and let X be a self-adjoint operator on L2(Rd) such that

X2 ≤ 1. Then we have

Tr(β(X̺X)) ≤ Tr(Xβ(̺)X).

Applying this lemma yields

Tr(βs(χR ̺k χR)) + Tr(βs(ξR ̺k ξR)) ≤ Tr(βs(̺k)). (3.20)

We will pass to the limit separately in the two terms of the left-hand side. For
clarity, we divide the proof of (3.13) into two steps. In this step, we treat the term
Tr(βs(χR ̺k χR)), R being fixed. In Step 7 we treat the other term Tr(βs(ξR ̺k ξR))
and we conclude.

Denote ˜̺k = χR ̺k χR and ˜̺= χR ̺χR. For all η > 0, we decompose

βs(λ) = β0s (λ) + β1s (λ) = (βs ◦ 1λ>η)(λ) + (βs ◦ 1λ≤η)(λ). (3.21)

and denote respectively by (λ̃k,i)i∈N∗ and (λ̃i)i∈N∗ the nonincreasing sequences of
eigenvalues of ˜̺k and ˜̺. Since the operator of multiplication by χR is bounded on
L2(Rd), the strong J1 convergence (3.12) proved in Step 5 implies that

‖˜̺k − ˜̺‖J1
= ‖χR(̺k − ̺)χR‖J1

→ 0 as k → +∞. (3.22)

As seen above, the convergence in J1 implies the convergence of eigenvalues, thus

∀i ∈ N
∗, lim

k→+∞
λ̃k,i = λ̃i. (3.23)

Hence, for all η > 0, we have

Tr(β0s (˜̺k)) =
∑

λ̃k,i>η

βs(λ̃k,i) →
∑

λ̃i>η

βs(λ̃i) = Tr(β0s (˜̺)), (3.24)

as k → +∞, both sums being finite.
We now claim that, for all R,

lim
η→0

sup
k∈N∗

|Tr(β1s (˜̺k))| = 0 and lim
η→0

|Tr(β1s (˜̺))| = 0. (3.25)

Assuming this claim, from (3.21) and (3.24), one deduces that, for all R,

lim
k→+∞

Tr(βs(χR ̺k χR)) = Tr(βs(χR ̺χR)). (3.26)

Let us now prove the claim (3.25). We first remark that

Tr(
√
−∆˜̺k

√
−∆) =

∑

i∈N∗

λk,i‖∇(χRψk,i)‖2L2 ≤ C (Tr(̺k) + E(̺k)) ≤ C ′, (3.27)
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where C ′ is independent of k and R. Similarly, denoting by (λi, ψi)i∈N∗ the eigen-
values and eigenfunctions of ̺, we have

Tr(
√
−∆˜̺

√
−∆) =

∑

i∈N∗

λi‖∇(χRψi)‖2L2 ≤ C (Tr(̺) + E(̺)) < +∞. (3.28)

Moreover, we remark that

n˜̺k
= (χR)

2n, n˜̺ = (χR)
2n. (3.29)

Indeed, for all φ ∈ L∞(Rd), we have
∫

Rd

n˜̺k
(x)φ(x)dx = Tr (χR ̺k χR φ) = Tr (̺k χR φχR)

=

∫

Rd

n̺k(x)φ(x)(χR(x))
2dx =

∫

Rd

n(x)φ(x)(χR(x))
2dx,

and similarly for ˜̺, which yields (3.29).
From (3.28) and (3.29), one deduces that ˜̺ ∈ E+ and that n˜̺ log n˜̺ belongs to

L1. By the logarithmic Sobolev inequality (2.6), this implies that |Tr βs(˜̺))| < ∞:
the second part of the claim (3.25) is proved.

Let us now prove the first part of this claim, by comparing the spectrum of the
operator ˜̺k with the one of the harmonic oscillator Hho = −∆+ |x|2. Recall that

the i-th eigenvalue µi of Hho (counted with multiplicities) satisfies µi ∼ Ci1/d. We
will use the following classical lemma proved e.g. in [17]:

Lemma 3.3. Let ̺ ∈ E+ and denote by (λi)i≥1 the nonincreasing sequence of

nonzero eigenvalues of ̺. Let (µi)i≥1 be the nondecreasing sequence of eigenval-

ues of the quantum harmonic oscillator Hho. Then we have

Tr(
√
−∆ρ

√
−∆) +

∫

R3

|x|2n̺(x)dx ≥
∑

i≥1

λi µi. (3.30)

By (3.29), we have
∫

R3

|x|2n˜̺k
(x)dx ≤

∫

|x|≤2R
|x|2n(x)dx ≤ (2R)2, (3.31)

since
∫
n(x)dx = 1. Therefore, one deduces from (3.30), (3.27) and (3.31) the

estimate ∑

i≥1

λ̃k,i µi ≤ C(R), (3.32)

where (λ̃k,i)i∈N∗ denote the eigenvalues of ˜̺k and C(R) is a constant depending on
R but not on k. Let us now introduce the constant

Cd := sup
λ∈(0,1]

(
|βs(λ)|λ−

1+4d
2+4d

)
< +∞,

where we used that βs(λ) ∼ λ log λ near 0. We estimate:

∣∣Tr(β1s (˜̺k))
∣∣ =

∑

λ̃k,i≤η

|βs(λ̃k,i)| ≤ Cd

∑

λ̃k,i≤η

λ̃k,i
1+4d
2+4d ≤ Cd η

1

2+4d

∑

i∈N∗

λ̃k,i
2d

1+2d

≤ Cd η
1

2+4d

(
∑

i∈N∗

λ̃k,i µi

) 2d
1+2d

(
∑

i∈N∗

µ−2d
i

) 1

1+2d
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where we used a Hölder inequality. Since µi ∼ Ci1/d, the series
∑

i µ
−2d
i converges.

By (3.32), this gives

sup
k∈N∗

∣∣Tr(β1s (˜̺k))
∣∣ ≤ C ′(R) η

1

2+4d

and the claim (3.25) is proved.

Step 7: convergence of the entropy, part 2. We now consider the second term
Tr(βs(ξR ̺k ξR)) in (3.20). Let ̺̂k = ξR ̺k ξR and ̺̂ = ξR ̺ ξR. Similarly as (3.27)
and (3.28), we have

Tr(
√
−∆̺̂k

√
−∆) =

∑

i∈N∗

λk,i‖∇(ξRψk,i)‖2L2 ≤ C (Tr(̺k) + E(̺k)) ≤ C (3.33)

Tr(
√
−∆̺̂

√
−∆) =

∑

i∈N∗

λi‖∇(ξRψi)‖2L2 ≤ C (Tr(̺) + E(̺)) < +∞, (3.34)

and, similarly as (3.29), one has

n̺̂k
= (ξR)

2n and n̺̂ = (ξR)
2n. (3.35)

Therefore, from (3.33), (3.34), (3.35) and the optimized logarithmic Sobolev in-
equality (3.1), one gets

2

∫

Rd

(ξR)
2n log

(
(ξR)

2n
)
dx− C

∫

Rd

(ξR)
2ndx ≤ Tr(βs(̺̂k)) + Tr(βs(̺̂)) ≤ 0

(for the right inequality, recall simply that the eigenvalues of ̺̂k and ̺̂ belong to
[0, 1]). Thus, since the left-hand side is independent of k, one deduces from n ∈ L1,
n log n ∈ L1, from the definition of ξR and from dominated convergence that

lim
R→+∞

sup
k∈N∗

Tr(βs(ξR ̺k ξR)) = 0 and lim
R→+∞

Tr(βs(ξR ̺ ξR)) = 0. (3.36)

The last ingredient of the proof of (3.19) is the following result taken from [2]:

Lemma 3.4 ([2], Lemmas 3 and 4). Let f be a continuous and decreasing function

on [0, 1] with f(0) = 0. Let ̺ ∈ E+ and let X be a self-adjoint operator on L2(Rd)
such that X2 ≤ 1. Then we have

Tr(f(̺)) ≤ Tr(Xf(̺)X).

We use this lemma with the functions f(λ) := βs(λ) = λ log λ − λ, with the
density matrices ̺k ∈ E+ or ̺ ∈ E+ and with X = χR. Recalling (3.20) (and the
similar inequality for ̺), one gets

Tr(βs(̺k)) ≤ Tr(βs(χR ̺k χR)) ≤ Tr(βs(̺k))− Tr(βs(ξR ̺k ξR)), (3.37)

and

Tr(βs(̺)) ≤ Tr(βs(χR ̺χR)) ≤ Tr(βs(̺))− Tr(βs(ξR ̺ ξR)). (3.38)

We have the tools to conclude: from (3.37), (3.38), (3.26) and (3.36), one deduces
(3.19). Finally, (3.14) and (3.19) yield (3.13).
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Step 8: conclusion. From (3.5), (3.7), (3.13) and Tr(̺k) → Tr(̺), one deduces
that F (̺) ≤ infσ∈A F (σ). Since we have proved in Step 4 that ̺ ∈ A, this shows
that the infimum is realized:

F (̺) = min
σ∈A

F (σ).

To conclude the proof of the theorem, it remains to remark that the strict convexity
of the function β implies that ̺ 7→ Tr(β(̺)) is strictly convex (see e.g. [17], Lemma
3.3). Hence the function F is also strictly convex and the minimizer ̺ is unique.
The proof of Theorem 2.1 is complete. �

4. Extensions

In this section, we give various extensions to our Theorem 2.1.

4.1. Other entropies. We have chosen to work with the more interesting physical
cases, the Boltzmann entropy or the Fermi-Dirac entropy, but one can deal with
other entropies. If, instead of (2.5), we choose β as a strictly convex function, of
class C1 on [0, 1] and satisfying β(0) = 0, then one can prove that the minimization
problem (2.8), with F , E and S defined by (2.9), (2.3) and (2.4), admits a unique
minimizer under the following assumption on n:∫

Rd

n(x)dx = 1,
√
n ∈ H1(Rd).

Note that we do not need here to assume that n log n ∈ L1. This case is in fact more
regular than the one treated in Theorem 2.1. Indeed, the entropy is now continuous
on the energy space, which was not true for β given by (2.5). In Step 5 of Section
3, we have in fact proved the following result:

Lemma 4.1. If β is continuous on [0, 1] and if |β(x)| ≤ C|x|, then the functional

̺ 7→ S(̺) = Tr(β(̺)) is continuous on J1.

Thanks to this lemma, the proof of the result is significantly shorter than the one
of Theorem 2.1, since one can skip Steps 6 and 7 and conclude directly after Step
5.

4.2. Bounded domains. Instead of the whole space R
d, one can be interested in

considering the problem on a smooth bounded domain Ω, with Dirichlet or Neumann
boundary conditions. Let H = −∆ on L2(Ω) equipped with the domain D(H) =
H2(Ω) ∩H1

0 (Ω) if we choose Dirichlet boundary conditions, or D(H) = H2(Ω) for
the case of Neumann boundary conditions. The energy space is then defined as the
following set of operators on L2(Ω):

E+(Ω) =
{
̺ ∈ J1, ̺ = ̺∗, 0 ≤ ̺ ≤ 1 and

√
H̺

√
H ∈ J1

}
.

Then we consider the problem of minimization (2.8), with

E(̺) = Tr
(√

H̺
√
H
)
,

and S(̺) still defined by (2.4), (2.5) (more regular entropies can of course be con-
sidered). It can be proved that this problem admits a unique minimizer under the
assumption ∫

Ω
n(x)dx = 1,

√
n ∈ H1

0 (Ω),



12 F. MÉHATS AND O. PINAUD

in the case of Dirichlet boundary conditions, or∫

Ω
n(x)dx = 1,

√
n ∈ H1(Ω),

in the case of Neumann boundary conditions. Again, no assumption is required on
the function n log n. The reason for it is that one has the following lemma:

Lemma 4.2. Let β be given by (2.5), then the functional ̺ 7→ S(̺) = Tr(β(̺)) is

continuous on E+(Ω).
This lemma is proved in the case of the dimension d = 1 in [17], but this proof

can easily be extended, by an argument similar as the one that we used here in Step
6. The crucial point is that, for a density matrix in the energy space, one has (see
Lemma 3.3): ∑

i∈N∗

λi µi < +∞,

where (λi)i∈N∗ is the nonincreasing sequence of eigenvalues of ̺ and (µi)i∈N∗ is the
nondecreasing sequence of eigenvalues of H, which satisfies the Weyl asymptotics
µi ≤ Ci2/d.

4.3. Other interaction terms and non linear energies. Instead of using the
simple kinetic energy (2.3), one can take into account some additional terms in
the energy of the density matrices, modeling interactions. In dimension d = 3 (for
simplicity), consider the following energy for a density matrix, composed of four
terms:

Ẽ(̺) = Tr(
√
−∆̺

√
−∆) +

∫

R3

V (x)n̺(x)dx+WH(̺) +WHF . (4.1)

The first term in (4.1) is E(̺), the kinetic energy of the particles. The second
term is the potential energy in a given external potential V (x). We assume that

V ∈ L3/2(R3) + L∞(R3), for instance V (x) =
∑m

j=1 qj |x − xj |−1 models the inter-
action with m fixed ions. The third and the fourth terms model some non linear
interactions between particles. In order to take into account the most physical cases,
we consider the Hartree energy

WH(̺) = α

∫

R3

∫

R3

n̺(x)n̺(y)

|x− y| dxdy,

and the Hartree-Fock exchange energy

WHF (̺) = β

∫

R3

∫

R3

(̺(x, y))2

|x− y| dxdy,

where α and β < 0 are real-valued parameters and where ̺(x, y) denotes the integral
kernel of the operator ̺.

Let us first make a simple remark. The linear term
∫
V n̺dx and the Hartree

term WH depend on ̺ only through its density n̺: since this density is prescribed
in our problem (2.8), these term will be constant ! Hence, we only have to check
that they are well-defined under our assumptions. It is immediate for the case of
Hartree interaction only, namely when β = 0. Indeed, the fact that

√
n̺ ∈ H1(R3)

implies by standard Sobolev embeddings that n̺ ∈ L1(R3)∩L3(R3) ⊂ L
6

5 (R3) and
the Hardy-Littlewood-Sobolev inequality [18] yields

|WH | ≤ C‖n̺‖2
L

6
5

.
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When V ∈ L3/2(R3) + L∞(R3), it is also clear that
∫
V n̺dx is finite from the

previous regularity of n̺.
When the Hartree-Fock exchange term is included, we set α = −β = 1, without

loss of generality. The result of Theorem 2.1 can be extended to such a case provided
two facts are satisfied: WHF must be well-defined and the non-linear term WH +
WHF must be lower semi-continuous. The first item follows from the Cauchy-
Schwarz inequality and the simple observation that, a.e.,

(̺(x, y))2 ≤ n̺(x)n̺(y).

Recall indeed that ̺(x, y) =
∑

i∈N∗ λiψi(x)ψi(y), where (λi, ψi)i∈N∗ are the spectral
elements of ̺. This implies that |WHF | is controlled by WH which is finite. The
second item is proved in [11] and uses the Fatou lemma with the fact thatWH+WHF

is non-negative.

4.4. Constraint on the current density. As already mentioned in the intro-
duction, the theory of Degond and Ringhofer involves constraints on higher order
moments of the density operator in addition to the density. These moments of inter-
est are the current density and the energy density. We explain below how Theorem
2.1 can be extended to both the charge density and the current density constraints.
Because of a lack of compactness, we do not tackle the energy constraint yet.

Denoting by (λi, ψi)i∈N∗ the spectral elements of ̺, the current density associated
to ̺ is defined by

j̺(x) =
∑

i∈N∗

λi Im ψ∗
i∇ψi. (4.2)

This can be recast in a weak formulation as∫

Rd

j̺ · ψ dx = −iTr
(
̺

(
ψ · ∇+

1

2
∇ · ψ

))
, ∀ψ ∈ (W 1,∞(Ω))d.

We make the following assumption:

Assumption A. The functions n(x) and j(x) are given such that there exists a

density operator ̺0 ∈ E+ satisfying Tr(̺0) = 1, n̺0 = n and j̺0 = j.

We already know (see Section 2) that Assumption A implies that
√
n ∈ H1(Rd).

Moreover, as consequences of Lieb-Thirring inequalities, see [1], Assumption A im-
plies that the current density j belongs to (Lq(Rd))d, with





1 ≤ q ≤ 2 if d = 1,
1 ≤ q < 2 if d = 2,

1 ≤ q ≤ d
d−1 if d ≥ 3.

(4.3)

Assumption A is verified for instance if there exists u (regular enough) with vanish-
ing rotational such that j = nu. Indeed, since ∇× u = 0, there exists S such that
u = ∇S. Defining then Ψ =

√
neiS , a possible choice for ̺0[n, j] is given by

̺0[n, j] = |Ψ〉 〈Ψ| .
In such a context, Theorem 2.1 becomes:

Theorem 4.3. Consider a charge density n(x) and a current density j(x) that verify

Assumption A and such that n log n ∈ L1(Rd). Then the following minimization

problem with constraint:

minF (̺) for ̺ ∈ E+ such that n̺ = n, and j̺ = j,
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where F , E and S are defined by (2.9), (2.3), (2.4), (2.5), is attained for a unique

density operator.

The proof of Theorem 2.1 can easily be modified so as to include the current
constraint, one only needs to verify two facts: first, that the space of admissible
density operators

A = {̺ ∈ E+ such that n̺ = n, j̺ = j}
is not empty. This is a direct consequence of Assumption A. Second, that the limit
of the minimizing sequence verifies the current constraint. To see this, consider a
minimizing sequence (̺k)k as in Step 3 of the proof. We know from Steps 3 and 4

that ̺k converges strongly to ̺ in J1, that (1−∆)1/2̺k(1−∆)1/2 converges in the

J1 weak-∗ topology to (1 − ∆)1/2̺(1 − ∆)1/2 as k → +∞ and that n̺ = n. We

have to show that j̺ = j. For this, for all ψ ∈ (W 1,∞(Ω))d, denoting also by ψ the
(component by component) multiplication operator by ψ, the weak formulation of
the constraint reads

∫

Rd

j · ψ dx = −iTr
(
̺k

(
ψ · ∇+

1

2
∇ · ψ

))
.

Since ∇ · ψ ∈ L∞(Rd) and ̺k → ̺ strongly in J1, we find directly

Tr (̺k∇ · ψ) → Tr (̺∇ · ψ) . (4.4)

Regarding the second term in the definition of the current, we have

Tr (̺k (ψ · ∇)) = Tr (̺k (ψ · ∇) (1− χR))+Tr
(
(1−∆)1/2̺k(1 −∆)1/2KR

)
, (4.5)

where χR is the same function as in Step 4 and

KR = (1−∆)−1/2 (ψ · ∇)χR(1−∆)−1/2.

Since (1−∆)−1/2 (ψ · ∇) is a bounded operator and χR(1−∆)−1/2 is compact, we
deduce that KR is compact and therefore, for all R > 0, as k → ∞:

Tr
(
(1−∆)1/2̺k(1−∆)1/2KR

)
→ Tr

(
(1−∆)1/2̺(1−∆)1/2KR

)
. (4.6)

For the first term of r.h.s of (4.5), we write

Tr (̺k (ψ · ∇) (1− χR)) = Tr
(
(1− χR)

√
̺k
√
̺k(1−∆)1/2(1−∆)−1/2 (ψ · ∇)

)
.

Denoting by J2 the space of Hilbert-Schmidt operators on L2(Rd), we find

|Tr (̺k (ψ · ∇) (1− χR))|
≤ ‖(1− χR)

√
̺k‖J2

‖√̺k(1−∆)1/2‖J2
‖(1−∆)−1/2 (ψ · ∇) ‖L(L2(Rd)).

As already mentioned, (1 − ∆)−1/2 (ψ · ∇) is a bounded operator and moreover√
̺k(1−∆)1/2 is bounded in J2 independently of k as

‖√̺k(1−∆)1/2‖2J2
= Tr

(
(1−∆)1/2̺k(1−∆)1/2

)
≤ C.

This implies that

|Tr (̺k (ψ · ∇) (1− χR))| ≤ C‖(1− χR)
√
̺k‖J2

.
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Let us now denote by (λk,i, ψk,i)i∈N∗ the spectral elements of ̺k. Then

‖(1− χR)
√
̺k‖2J2

=
∑

i∈N∗

‖(1 − χR)
√
̺kψk,i‖2L2(Rd),

=
∑

i∈N∗

λk,i

∫

Rd

(1− χR)
2|ψk,i|2dx,

=

∫

Rd

(1− χR)
2ndx,

since ̺k ∈ A so that n̺k = n. The Lebesgue dominated convergence theorem then
implies that

lim
R→∞

sup
k∈N∗

|Tr (̺k (ψ · ∇) (1− χR))| = 0. (4.7)

Gathering (4.4), (4.5), (4.6) and (4.7) finally yields, when k → ∞,

−iTr
(
̺k

(
ψ · ∇+

1

2
∇ · ψ

))
→ −iTr

(
̺

(
ψ · ∇+

1

2
∇ · ψ

))
,

=

∫

Rd

j · ψ dx.

This means that j̺ = j and therefore that ̺ ∈ A. The rest of the proof of Theorem
4.3 is identical to that of Theorem 2.1.
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