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Abstract

A mathematical model of quantum transient transport in dimension d =
2, 3 is derived and analyzed. The model describes the evolution of electrons
injected into the device by reservoirs having a stationary statistics. The elec-
trostatic potential in the device is modified by electron presence through elec-
trostatic interaction. The wave functions are computed in the device region
and satisfy non homogeneous open boundary conditions at the device edges. A
priori estimates are deduced from the “dissipative properties” of the boundary
conditions and from the repulsive character of the electrostatic interaction.

Key words : Quantum transport; transient Schrödinger-Poisson system; open
boundary conditions.

1 Introduction

In nanoscale semiconductor devices, the typical lengthscale and the de Broglie wave-
length of electrons are comparable. Therefore, quantum effects such as tunneling
become important and have to be taken into account in the models. When the
transport is ballistic (which means that electrons do not suffer any collision during
their transit in the device), the Schrödinger picture is well adapted. The electrons are
in a mixed state, each elementary state being a solution of the Schrödinger equation.
More precisely, the density matrix can be written

ρ(t, x, x′) =

∫

Λ

ψλ(t, x)ψλ(t, x
′) dµ(λ)

where λ is an index for the elementary states ψλ(t, x) and the integration is done
with respect to a measure µ. Each state ψλ is a solution of the Schrödinger equation

i
∂ψλ

∂t
(t, x) = −∆ψλ(t, x) + V (t, x)ψλ(t, x)

where V is the electrostatic potential. Since electrons are charged particles, they
contribute to the electrostatic potential through the electrostatic interaction. The
potential takes the form V = Ve + Vs where Ve is a given (exterior) potential and
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Vs is the self-consistent potential created by the electrons, which solves the Poisson
equation

−∆Vs = n(t, x) := ρ(t, x, x) =

∫

Λ

|ψλ(t, x)|2 dµ(λ).

The so-obtained Schrödinger-Poisson system has been widely studied in the time
dependent whole space setting in [11, 12, 16], and in the stationary case for bounded
domains with Dirichlet boundary conditions in [21, 22] or the whole space case in
[20]. In electronic devices, the nonlinear coupling effects take place in the middle
of the structure. This active region is not a closed region but is connected to the
exterior medium through access zones which can be considered at equilibrium and
are modeled by waveguides. The access zones allow the injection of electrons into
the active region which can be out of equilibrium. The Schrödinger-Poisson problem
is then set on the active region; suitable transparent boundary conditions at the
boundary between the access zones and the active zone have to be prescribed in order
to model the continuous electron injection. In the stationary picture, transparent
boundary conditions have been described in [17] and analyzed in [9] in the one
dimensional case and in [8] for the multidimensional case. For the time dependent
Schrödinger equation, transparent boundary conditions have been derived by several
authors from different application fields [2, 3, 5, 7, 14] in the one dimensional case
when the initial condition is compactly supported in the active region and their
discretization has been studied in [4, 6].

Our aim here is to derive the boundary conditions for the transient Schrödinger
equation in the case of continuous injection and to analyze the so-obtained Schrödinger-
Poisson system. The one-dimensional case was already treated in [10] and we extend
it to the dimension 2 or 3. F. Nier has already formulated and studied a more gen-
eral version of this problem in [19]. He has used the density matrix formulation of
quantum mechanics and analyzed the problem by means of scattering theory tech-
niques and functional calculus. Boundary conditions are not derived explicitly and
are taken into account implicitly thanks to the use of the notion of conjugate oper-
ators. In the present paper, we use the Schrödinger picture and derive transparent
boundary conditions which are more suitable for numerical simulations (see [3, 23]).

To fix the ideas, let us briefly consider the stationary one dimensional model for
a resonant tunneling diode. The device occupies a bounded interval [a, b] where the
electrostatic energy V (x) varies. Outside this interval, the function V is a constant.
The index λ of the statistical mixture is the momentum of incoming particles to the
domain [a, b] and shall be rather denoted by p. The wave function ψp corresponding
to electrons injected at the left boundary with a positive momentum p is a solution
of the Schrödinger equation

−1

2

d2ψp

dx2
+ V ψp = E(p)ψp

where E(p) = p2

2
+V (a). For x < a, we have ψp(x) = eipx+rpe

−ipx which expresses the
fact that only the incoming wave eipx has a prescribed amplitude (equal to 1), the
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reflection amplitude rp being an unknown of the problem. Transparent boundary
conditions are obtained for x = a by eliminating this unknown [8, 9]. The total
charge density is then computed by the formula

n(x) =

∫
f(p) |ψp(x)|2 dp,

where f(p) is the given statistics of entering particles (for p < 0, ψp corresponds to
electrons injected at x = b with momentum p). The stationary problem has been
studied in [8, 9] and in [19] in the density matrix formalism.

In the time dependent situation, we start from such a stationary solution and
then abruptly change the applied voltage. The question is to model the evolution
of the system. As mentioned above, a more general problem is dealt with in [19]
by scattering theory techniques. We choose here another route to tackle the prob-
lem. Namely we shall derive inhomogeneous time dependent transparent boundary
conditions for the Schrödinger equation (the derivation of homogeneous boundary
conditions can be found in [3, 7, 2]). Then we take advantage of the repulsivity of
the electrostatic interaction in order to derive a priori estimates for the Schrödinger-
Poisson problem. By doing so, we remove the restiction needed in [19] that f(p) = 0
in the vicinity of those p’s such that E(p) = V (a) or V (b).

The outline of the paper is as follows: in section (2), we introduce the notations
and the setting of the problem; the main results of the paper are presented at the end
of this section; in section (3), the linear model is studied and the boundary conditions
are defined; section (4) deals with the non-linear problem and local existence while
in section (5) global behaviour and energy estimates are investigated.

2 Setting of the problem and main results

The charge carriers occupy a region Ω of Rd (d = 2 or d = 3) which is the union
of a regular bounded domain Ω0 (the active region) and a finite number n of semi-
infinite cylinders (leads) Ωj which represent the access zones (see Fig. 1). The
interface between the active region Ω0 and the lead j (j = 1, · · · , n) is denoted by Γj.
The remaining part of the boundary of Ω0 is denoted by Γ0. The lead Ωj behaves
as a waveguide, injecting electrons into the active region Ω0. It has a set of local
coordinates ξj ∈ Γj, ηj ∈ R+ (see Fig. 1), where ξj is the transversal coordinate and
ηj the longitudinal one. We introduce also (µj(x))j=1,···,n, a partition of unity of Ω,
i.e. some C∞ functions which satisfy for j = 1, · · · , n





0 ≤ µj ≤ 1,
∑

j

µj ≡ 1 on Ω

µj ≡ 1 on Ωj and µj ≡ 0 on Ωk for k 6= 0, k 6= j

Class of initial data
Let us define the operator

H0 = −∆ + V 0
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Figure 1: The domain Ω

where V 0 is the exterior potential which is assumed to only depend on the transversal
coordinate in the leads:

V 0 ∈ L∞(Ω) ; V 0
∣∣
Ωj

= V 0
j (ξj).

Let (Λ, µ) be a set equipped with a bounded nonnegative measure µ such that

µ(Λ) =

∫

Λ

dµ < +∞. (2.1)

A family ψ0
λ ∈ H2

loc(Ω) indexed by λ ∈ Λ is said to belong to the class of initial data
if the following hypotheses are satisfied:

(H-1) For a.e. λ ∈ Λ, there exists a constant E(λ) such that

H0ψ0
λ = E(λ)ψ0

λ on Ωj (j = 1, · · · , n).

(H-2) We have supλ∈ supp µ |E(λ)| = ME < +∞.

(H-3) For all bounded set K ⊂ Ω, there exists CK > 0 such that

∫

Λ

‖ψ0
λ‖2

H2(K)dµ(λ) ≤
CK.
The cut-off assumption (H-2) is introduced for technical simplicity and could be
relaxed to ∫

Λ

(E(λ))p‖ψ0
λ‖2

H2(K)dµ(λ) ≤ CK,

for p large enough and for all bounded set K ⊂ Ω.
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Definition 2.1 The transversal eigenmodes and the eigenvalues of the guide j are
defined by 




−∆ξj
χ0,j

m + V 0
j (ξj)χ

0,j
m = Ej

m χ
0,j
m , m ∈ N

∗

χ0,j
m ∈ H1

0 (Γj),

∫

Γj

χ0,j
m χ0,j

m′ dσ(ξj) = δm,m′

(2.2)

where dσ(ξj) is the surface measure on Γj. For any fixed j the sequence (Ej
m) tends

to +∞ as m tends to +∞.

Typically in practice, λ = {k,m0, j0}, Λ = R+ × N∗ × [1, n], E(λ) = k2 + Ej0
m0

and

dµ(λ) = Φ(k,m0, j0) dk δm,m0
δj,j0

where δ denotes the Kronecker symbol. The energy k2 represents the kinetic energy
of the electrons while Ej0

m0
is the transversal energy of the m0th mode in the lead j0.

The function Φ is the statistics of the injected electrons.

Remark 2.2 Without loss of generality, we assume V 0
j ≥ 0, a.e, j = 1, · · · , n. Then

Ej
m ≥ 0 ∀m ≥ 1, j = 1, · · · , n.

For a function g defined on Γj (j 6= 0), we introduce the notation

〈g〉j :=

∫

Γj

g(ξj) dσ(ξj).

Remark 2.3 Let ϕ be an L2(Γj) function. We denote by

ϕj
m(ξj) = χj

m(ξj)
〈
ϕχj

m

〉
j

its projection on χj
m. Thanks to (2.2), the relation ϕ 7→

(∑

m≥1

Ej
m ‖ϕj

m‖2
L2(Γj)

)1/2

defines a norm equivalent to the H1
0 (Γj) norm.

Class V of potentials

We shall say that a potential W belongs to the class V if it satisfies:

(V-1) W ∈ C1([0, T ], L∞(Ω));
(V-2) for any j = 1, · · · , n, there exists a function Vj(t) such that for x ∈ Ωj we
have W (t, x) = V 0(x) + Vj(t).

In the Schrödinger-Poisson system presented in this paper, the potential V can be
decomposed as the sum of a given external potential Ve and a selfconsistent potential
Vs localized in the active zone, i.e. supported in Ω0. We shall assume

(H-4) The external potential Ve belongs to the above defined class V.
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If Vs ∈ C1([0, T ], L∞(Ω)), this assumption implies that V belongs to the class V.

Let us now define the operator

H(t) = −∆ + Ve(t, x) + Vs(t, x).

The open Schrödinger-Poisson system consists in solving for Vs(t, x) and ψλ(t, x)

i∂tψλ = H(t)ψλ ; ψλ(0, ·) = ψ0
λ ; x ∈ Ω (2.3)

H(t) = −∆ + Ve(t, x) + Vs(t, x) ; supp(Vs) ⊂ Ω0 (2.4)

−∆Vs = n =

∫

Λ

|ψλ|2dµ(λ), x ∈ Ω0 ; Vs |∂Ω0
≡ 0. (2.5)

Notice that the Schrödinger equation is set on the whole domain Ω including the
leads. We shall derive transparent boundary conditions allowing for its resolution
on the domain Ω0 only. To this aim, we first remark that, according to (H-1) and
(H-4) we have

H(t)ψ0
λ = (E(λ) + Vj(t))ψ

0
λ on Ωj for j = 1, · · · , n.

Defining the phase factor

θj
λ(t) = exp

(
−i
∫ t

0

(E(λ) + Vj(s)) ds

)
,

the plane wave function

ψpw
λ (t, x) = ψ0

λ(x)

n∑

j=1

µj(x)θ
j
λ(t) (2.6)

satisfies

i∂tψ
pw
λ = H(t)ψpw

λ on ∪j=1,···,n Ωj ; ψpw
λ (0, x) = ψ0

λ(x) on Ω.

In order to define the boundary conditions, we introduce the following notation

χj
m(t, ξj) = χ0,j

m (ξj) exp

(
−i
∫ t

0

(Vj(τ) + Ej
m) dτ

)
. (2.7)

At any time, (χj
m)m≥1(t, .) is an orthonormal basis of L2(Γj).

Definition 2.4 For any given function f ∈ Hα(0, T ), α ≥ 0, one defines - see [15]:

I1/2f =
1√
π

∫ t

0

f(τ)√
t− τ

dτ
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which verifies I1/2f ∈ H1/2+α(0, T ). Then, we denote ∂1/2f as the distributional
derivative of I1/2f :

∂1/2f =
d

dt
I1/2f =

1√
π

d

dt

∫ t

0

f(τ)√
t− τ

dτ.

For any f ∈ Hα((0, T ), L2(Γj)), we set

I
1/2
j f(t, ξj) =

∑

m≥1

χj
m(t, ξj) I1/2

〈
f(t, ·)χj

m(t, ·)
〉

j
(2.8)

D
1/2
j f(t, ξj) =

∑

m≥1

χj
m(t, ξj) ∂

1/2
〈
f(t, ·)χj

m(t, ·)
〉

j
. (2.9)

The main results of this paper are summarized in the following theorem:

Theorem 2.5 Assume d = 2, 3. Under the hypotheses (H-1)–(H-4) above, the
Schrödinger-Poisson system (2.3)–(2.5) admits a unique solution (ψλ, Vs) such that

Vs ∈ C0([0, T ], H1
0(Ω0)) ∩ C0([0, T ], H4(Ω0)) ∩ C1([0, T ], H2(Ω0))

and ψλ ∈ ψpw
λ + E for λ ∈ Λ a.e. with

E = C0([0, T ], H2(Ω)) ∩ C1([0, T ], L2(Ω)), (2.10)

where T is arbitrary large. Moreover, the Schrödinger-Poisson system (2.3)–(2.5) on
Ω is equivalent to the boundary value problem on Ω0 consisting in the Schrödinger-
Poisson system (2.3)–(2.5) with a Dirichlet boundary condition on Γ0 and one of the
following equivalent boundary conditions on Γj, j = 1, · · · , n:

∂

∂ηj

(ψλ − ψpw
λ ) = −e−iπ/4

D
1/2
j (ψλ − ψpw

λ ) a.e. (2.11)

ψλ − ψpw
λ = −eiπ/4

I
1/2
j

(
∂

∂ηj

(ψλ − ψpw
λ )

)
a.e.. (2.12)

In the whole paper, C will denote a generic constant, depending on µj, on ‖Vj‖C1([0,T ]),
on ‖V 0‖L∞, for j = 1, · · · , n and on ME.

3 The linear equation

In this section, under hypothesis (H-1)–(H-2), we study the linear Schrödinger
equation (2.3) with

H(t) = −∆ + V (t, x)

and where V is given in the above defined class V of potentials. Firstly, we prove the
well-posedness of this equation on ψpw

λ + E . Notice that the classical L2-theory does
not apply since the initial data ψ0

λ /∈ L2(Ω). We also derive the boundary conditions
satisfied by the wave function on each interface Γj, j = 1, · · · , n. Finally, we give
some estimates which will be crucial for the analysis of the non-linear problem.
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3.1 Derivation of the boundary conditions

Before analyzing the Schrödinger equation in the open domain Ω, let us recall the
standard result in the L2 framework. Consider the Schrödinger equation

{
i∂tΨ = −∆Ψ + V (t, x)Ψ + f(t, x) ; x ∈ Ω

Ψ(t = 0, ·) = Ψ0, Ψ = 0 on R+ × ∂Ω.
(3.1)

Lemma 3.1 Let V ∈ C1([0, T ], L∞(Ω)), f ∈ C1([0, T ], L2(Ω)) and Ψ0 ∈ H2(Ω).
Then (3.1) admits a unique solution Ψ ∈ C0([0, T ], H2(Ω)) ∩ C1([0, T ], L2(Ω)). More-
over Ψ satisfies the following estimates: ∀T > 0, ∀t ∈ [0, T ],

‖Ψ(t)‖L2(Ω) ≤ ‖Ψ0‖L2(Ω) + ‖f‖L1((0,t),L2(Ω)), (3.2)

‖∇Ψ(t)‖2
L2(Ω) ≤ ‖∇Ψ0‖2

L2(Ω) + C(1 + t3)
(
‖Ψ0‖2

L2(Ω) + ‖f‖2
C1([0,t],L2(Ω))

)
×

×
(
1 + ‖V ‖C1([0,t],L∞(Ω))

)
,

(3.3)
‖Ψ(t)‖H2(Ω) ≤

(
‖Ψ0‖H2(Ω) + ‖f‖C1([0,t],L2(Ω))

)
×

×
(
1 + ‖V ‖C1([0,t],L∞(Ω))

)
.

(3.4)

Proof. This proof is very standard. We shall however detail it for the sake of com-
pleteness. Since V ∈ C1([0, T ], L∞(Ω)), i∆ − iV generates a strongly differentiable
unitary propagator U(t, s) (see [24], theorem X.70) and then Ψ can be written

Ψ(t) = U(t, 0)Ψ0 +

∫ t

0

U(t, s)f(s)ds ∈ L2(Ω). (3.5)

The regularity is obtained by noticing that u := ∂tΨ verifies

u(t) = U(t, 0)u0 +

∫ t

0

U(t, s) (∂sV (s) Ψ(s) + ∂sf(s)) ds ∈ L2(Ω) (3.6)

since
u0 = i∆Ψ0 − iV (0, x)Ψ0 − if(0, x) ∈ L2(Ω)

and
∂tV Ψ + ∂tf ∈ C0([0, T ], L2(Ω)).

Finally, Ψ ∈ C1([0, T ], L2(Ω)) and [13] (Remark 2.5.1 (vi)) gives Ψ ∈ C0([0, T ], H2(Ω))∩
C1([0, T ], L2(Ω)).

To prove the estimate (3.4), we first notice from (3.5) that, ∀T > 0, ∀t ∈ [0, T ],

‖Ψ(t)‖L2(Ω) ≤ ‖Ψ0‖L2(Ω) + ‖f‖L1((0,t),L2(Ω))

and from (3.6) that

‖∂tΨ(t)‖L2(Ω) ≤ C(1 + t2)
(
‖Ψ0‖H2(Ω) + ‖f‖C1([0,t],L2(Ω))

) (
1 + ‖V ‖C1([0,t],L∞(Ω))

)
.
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Finally, we estimate ‖∆Ψ(t)‖L2(Ω) thanks to (3.1) to obtain (3.4). To obtain (3.3),we

take the L2(Ω) scalar product of (3.1) with ∂tΨ, integrate over [0, t] and take the
real part. Estimate (3.3) follows after straightforward integration by parts.

Proposition 3.2 (i) Assume ψ0
λ ∈ H2

loc(Ω) such that (H-1) and (H-2) are satisfied.
Then, the equation (2.3), with V belonging to the class V, admits a unique solution
in ψpw

λ + E , where ψpw
λ was defined in (2.6). Moreover, this solution ψλ verifies the

estimates, pointwise in t,

‖ψλ(t) − ψpw
λ (t)‖L2(Ω) ≤ Ct ‖ψ0

λ‖H2(Ω0)

(
1 + ‖V ‖C0([0,t],L∞(Ω))

)
(3.7)

‖ψλ(t) − ψpw
λ (t)‖H2(Ω) ≤ C(1 + t2) ‖ψ0

λ‖H2(Ω0)

(
1 + ‖V ‖2

C1([0,t],L∞(Ω))

)
. (3.8)

(ii) Assume (H-1), (H-2) satisfied. Let ψλ ∈ ψpw
λ +E be the unique solution of (2.3),

with V belonging to the class V. Then ψλ is the unique solution of the boundary
value problem on Ω0 consisting in the Schrödinger equation (2.3) with the Dirichlet
boundary condition on Γ0 and one of the following equivalent boundary conditions
a.e. on Γj, j = 1, · · · , n:

∂

∂ηj

(ψλ − ψpw
λ ) = −e−iπ/4

D
1/2
j (ψλ − ψpw

λ ) (3.9)

ψλ − ψpw
λ = −eiπ/4

I
1/2
j

(
∂

∂ηj

(ψλ − ψpw
λ )

)
. (3.10)

The following remark will be used all along the paper:

Remark 3.3 Standard interpolation results imply: for 0 ≤ σ ≤ 1, s ≤ 1 − σ,
[
L2((0, T ), H2(Ω0)), H

1((0, T ), H t(Ω0))
]
σ

= Hs((0, T ), H2σ+(1−σ)t(Ω0)), (3.11)

see [1] for the definition of the interpolation brackets, and then

E ⊂ Hs((0, T ), H2σ(Ω0)), 0 ≤ σ ≤ 1, s ≤ 1 − σ. (3.12)

Proof. Let us first define the function φλ := ψλ −ψpw
λ . Putting this expression into

(2.3) and using (H-1), we obtain




i
∂φλ

∂t
= −∆φλ + V φλ − Sλ(V ) in Ω

φλ(0, x) = 0,

(3.13)

where Sλ(V ) is defined by

Sλ(V ) = 2∇ψ0
λ ·
∑

j≥1

∇µj θj
λ + ψ0

λ

∑

j≥1

(
∆µj + Vj µ

j
)
θj

λ

+
[
(E(λ) − V )ψ0

λ + ∆ψ0
λ

]∑

j≥1

µj θj
λ

(3.14)
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and satisfies
supp Sλ(V ) ⊂ Ω0. (3.15)

Since ψ0
λ ∈ H2

loc(Ω) and V ∈ C1([0, T ], L∞(Ω)), we have Sλ(V ) ∈ C1([0, T ], L2(Ω)) and
Lemma (3.1) applies: this gives the existence and uniqueness in ψpw

λ + E . Estimates
(3.7) and (3.8) are direct applications of (3.2) and (3.4) since

‖Sλ(V )‖C1([0,T ],L2(Ω)) ≤ C‖ψ0
λ‖H2(Ω0)

(
1 + ‖V ‖C1([0,T ],L∞(Ω))

)
. (3.16)

The constant C above is λ-independent because of hypothesis (H-2).
By using the approach developed in [14] for the wave equation, transparent

boundary conditions were derived in [3, 7] for the 1D Schrödinger equation, in an
homogeneous case and when the external potential is constant. In the present case,
we apply the obtained results in each lead Ωj and we extend them to the case of
time-dependent external potentials. Consider the function φλ defined hereabove. On
each Ωj, j = 1, · · · , n, the wavefunction φλ can be expanded on the basis (χj

m(t, ·))m:

φλ(t, ξj, ηj) =
∑

m≥1

ϕm(t, ηj)χ
j
m(t, ξj).

Since V belongs to the class V , it verifies

V
∣∣
Ωj

= V 0
j (ξj) + Vj(t) j 6= 0

and thanks to (3.13), ϕm(t, ηj) solves





i
∂ϕm

∂t
(t, ηj) = −∂

2ϕm

∂η2
j

(t, ηj) (ηj ≥ 0)

ϕm(0, ηj) = 0.

(3.17)

Following now [3, 7], ϕm verifies on Γj the scalar Dirichlet-to-Neumann boundary
condition:

∂ϕm

∂ηj

= −e−iπ/4 ∂1/2 (ϕm) . (3.18)

Similarly, ϕm satisfies the scalar Neumann-to-Dirichlet boundary condition:

ϕm = −eiπ/4 I1/2

(
∂ϕm

∂ηj

)
. (3.19)

Finally, coming back to φλ, we obtain (3.9) and (3.10). Notice that (3.10) makes
sense a.e. on (0, T ) × Γj since φλ ∈ E and then, by trace properties [18], ∂

∂ηj
φλ ∈

C0([0, T ], L2(Γj)). For (3.9), we deduce from (3.12) that E ⊂ H1/2((0, T ), H1(Ω0)).
Therefore φλ|Γj

∈ H1/2((0, T ), L2(Γj)) and (3.9) is verified a.e. on (0, T ) × Γj.
To complete the proof, it remains to remark that the solution of the boundary

value problem (2.3) with (3.9) or (3.10) is unique. This property follows easily from
estimate (3.26) that we shall prove in the next subsection.
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3.2 Dissipation estimates

In this subsection, we first give some properties and dissipation relations of the
boundary conditions (3.9) and (3.10). Then, we deduce some a priori estimates,
leading in particular to uniqueness results.

Lemma 3.4 Let the Fresnel integral be defined by

Υ(t) =
1√
π

∫ t

0

eiτ

√
τ
dτ ; t ∈ R. (3.20)

There exists a positive constant M such that |Υ(t)| ≤ M
√

|t|/(1 +
√

|t|) on R.
Moreover, we have the following identities

I1/2
(
e−iωt

)
=
e−iωt

√
ω

Υ(ωt) ; ∂1/2
(
e−iωt

)
=

1√
π t

− i
√
ω e−iωt Υ(ωt).

The proof of this lemma can be found in [15]. A direct consequence is

Lemma 3.5 Let ψpw
λ ∈ C1([0, T ], H2

loc(Ω)) be defined in (2.6), Υ in (3.20) and D
1/2
j

in (2.9). Then, we have the following formula

D
1/2
j (ψpw

λ ) =
+∞∑

m=1

(
1√
πt

−i
√
E(λ) − Ej

m e
−i(E(λ)−Ej

m) t Υ
(
(E(λ) − Ej

m) t
))

ψ0,j
m χj

m (3.21)

where ψ0,j
m = 〈ψ0

λ(ηj = 0, ·)χ0,j
m 〉j. Here (χ0,j

m , Ej
m)m∈N∗ are the eigenvectors and

eigenvalues of the guide j as expressed in (2.2) and χj
m is equal to χ0,j

m modulated by
a phase factor, see (2.7). Furthermore, if |E(λ)| ≤ME then we have

‖D
1/2
j (ψpw

λ )‖L2(Γj) ≤ C

√
1 +

1

πt
‖ψ0

λ‖H2(Ω0) (3.22)

where C depends on M , on ME and on T .

Proof. According to Lemma (3.4) and the estimate provided on Υ therein,

‖D
1/2
j (ψpw

λ )‖2
L2(Γj)

≤ 1

πt
‖ψ0

λ‖2
L2(Γj)

+M
∑

m≥1

(
ME + Ej

m

)
|ψ0,j

m |2

and Remark (2.3) coupled to trace properties imply

∑

m≥1

Ej
m|ψ0,j

m |2 ≤ C‖ψ0
λ‖2

H1(Γj)
≤ C ′‖ψ0

λ‖2
H2(Ω0).

The following technical lemma will enable to prove the dissipative properties of the
homogeneous transparent boundary conditions:

11



Lemma 3.6 Let f ∈ H1/4((0, T );L2(Γj)), g ∈ L2((0, T );L2(Γj)). Then, denoting
by Sπ/4 the cone

Sπ/4 = {z ∈ C : Arg(z) ∈ [−π/4, π/4]},
we have ∫ T

0

〈
f(t) D

1/2(f(t))
〉

j
dt ∈ Sπ/4, (3.23)

∫ T

0

〈
g(t) I

1/2(g(t))
〉

j
dt ∈ Sπ/4. (3.24)

As will be seen in the proof, Formula (3.23) is to be understood as a duality product
of H1/4(0, T ) and H−1/4(0, T ). Proof. This lemma is a consequence of Definition
(2.4) and of the Plancherel equality. Indeed, setting

f j
m(t) =

〈
f(t)χ0,j

m

〉
j

and denoting by Pf j
m ∈ H1/4(R) the function extended by zero outside (0, T ), we

have ∫ T

0

f̄ j
m ∂

1/2f j
m dt =

1√
π

∫

R

+
√
iν
∣∣∣P̂ f j

m(iν)
∣∣∣
2

dν,

where +
√

denotes the square root with nonnegative real part. It is now enough to

remark that for every real number ν we have +
√
iν ∈ Sπ/4 and that Sπ/4 is stable by

summations. Estimate (3.24) can be proved similarly. Indeed, denoting

gj
m(t) =

〈
g(t)χ0,j

m

〉
j

we have ∫ T

0

ḡj
m I1/2gj

m dt =
1√
π

∫

R

1
+
√
iν

∣∣∣P̂ gj
m(iν)

∣∣∣
2

dν ∈ Sπ/4. (3.25)

Let us now state the main result of this section:

Proposition 3.7 Assume (H-1)-(H-2) satisfied and let V belong to the class V.
Let ψλ ∈ ψpw

λ + E be the unique solution of (2.3). Then, ψλ satisfies the following
estimates, for all T positive, for all t in ]0, T ], λ a.e.,

‖ψλ(t)‖2
L2(Ω0) ≤ ‖ψ0

λ‖2
L2(Ω0) + C‖ψ0

λ‖H2(Ω0)

∫ t

0

(
1 +

1√
πs

)
‖ψλ(s)‖H1(Ω0)ds, (3.26)

‖ψλ(t)‖2
H1(Ω0) ≤ C‖ψ0

λ‖2
H2(Ω0) + C

∫ t

0

(
1 +

1√
πs

)
‖ψλ(s)‖2

H1(Ω0)ds

−
∫ t

0

∫

Ω0

V ∂t|ψλ|2ds

+C‖ψ0
λ‖H2(Ω0)

∫ t

0

‖V (s)‖L2(Ω)

(
‖ψ0

λ‖L2(Ω0) + ‖ψλ(s)‖L2(Ω0)

)
ds. (3.27)

12



Proof. This proof relies on the application of the dissipation relations (3.23)-
(3.24). Taking the L2(Ω0) scalar product of (2.3) with ψλ(t), taking the imaginary
part (denoted by =) and integrating over [0, t] leads to

‖ψλ(t)‖2
L2(Ω0) = ‖ψ0

λ‖2
L2(Ω0) − 2

n∑

j=0

=
∫ t

0

〈
∂ψλ

∂ηj
(s, ·)ψλ(s, ·)

〉

j

ds. (3.28)

In order to estimate the non-linear boundary term, we first recast it into, using the
boundary condition (2.11),

∫ t

0

〈
∂ψλ

∂ηj
ψλ

〉

j

ds = −
∫ t

0

〈
e−iπ/4

(
D

1/2
j ψλ

)
ψλ

〉
j
ds+

∫ t

0

〈
∂ψpw

λ

∂ηj
ψλ

〉

j

ds

+

∫ t

0

〈
e−iπ/4

(
D

1/2
j ψpw

λ

)
ψλ

〉
j
ds. (3.29)

Applying (3.23) to ψλ ∈ E implies

=
∫ t

0

〈
e−iπ/4

(
D

1/2
j ψλ

)
ψλ

〉
j
ds ≤ 0

and it remains to treat the linear terms of (3.29). The first one is estimated by

∫ t

0

〈
∂ψpw

λ

∂ηj
ψλ

〉

j

ds ≤
∫ t

0

‖ψ0
λ‖H2(Ω0) ‖ψλ‖H1(Ω0)ds

while, thanks to (3.22), we have for the second one

∫ t

0

〈
e−iπ/4

(
D

1/2
j ψpw

λ

)
ψλ

〉
j
ds ≤ C‖ψ0

λ‖H2(Ω0)

∫ t

0

(
1 +

1√
πs

)
‖ψλ(s)‖H1(Ω0)ds.

This ends the proof of (3.26).

Let us now tackle (3.27). To this aim, we first take the real part (denoted by <)
of the L2(Ω0) scalar product of (2.3) with ∂tψλ(t) and get

‖∇ψλ(t)‖2
L2(Ω0) = ‖∇ψ0

λ‖2
L2(Ω0) + 2

n∑

j=0

<
∫ t

0

〈
∂ψλ

∂ηj
∂tψλ

〉

j

ds (3.30)

−
∫ t

0

∫

Ω0

V ∂t|ψλ|2ds.

In order to estimate the second term of the right hand side, we define φλ =
ψλ − ψpw

λ . This function satisfies the following equation on Γj (see (2.8) and (3.10))

∂tφλ = −eiπ/4
D

1/2
j

(
∂φλ

∂ηj

)
− i Vj φλ + ieiπ/4

∑

m≥1

Ej
m χ

j
m I1/2

(〈
∂φλ

∂ηj
χj

m

〉

j

)
. (3.31)
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We then have

<
∑

j

∫ t

0

〈
∂ψλ

∂ηj

∂tψλ

〉

j

ds = −<
∑

j

e−iπ/4

∫ t

0

〈
∂φλ

∂ηj

D
1/2
j

(
∂φλ

∂ηj

)〉

j

ds

−=
∑

j

∫ t

0

Vj

〈
∂φλ

∂ηj
φλ

〉

j

ds

−< i e−iπ/4
∑

m≥1

Ej
m

∫ t

0

〈
∂φλ

∂ηj

χj
m

〉

j

I1/2

(〈
∂φλ

∂ηj

χj
m

〉

j

)
ds

+<
∑

j

∫ t

0

〈
∂ψpw

λ

∂ηj
∂tψλ

〉

j

ds

+<
∑

j

∫ t

0

〈
∂φλ

∂ηj
∂tψ

pw
λ

〉

j

ds.

In the sequel of the proof we shall assume that φλ ∈ C1([0, T ], H1(Ω0)). If this is
not the case, is suffices to regularize the data, then obtain the estimate for the reg-
ularized solution and pass to the limit in the regularization. We will use twice the
dissipative properties stated in Lemma 3.6. Firstly, since by (3.11) we have φλ ∈
H1/4((0, T ), H7/4(Ω0)), some trace properties imply that ∂

∂ηj
φλ ∈ H1/4((0, T ), H1/4(Γj))

(notice that φλ ∈ C1([0, T ], L2(Ω0)) would only lead to ∂
∂ηj
φλ inH1/4−α((0, T ), L2(Γj)),

∀α > 0, which is not sufficient). Hence (3.23) applied to ∂
∂ηj
φλ gives

−<e−iπ/4

∫ t

0

〈
∂φλ

∂ηj
D

1/2
j

(
∂φλ

∂ηj

)〉

j

ds ≤ 0.

Secondly, thanks to Remark (2.2) we notice that Ej
m ≥ 0. Thus from (3.25) we

obtain

−< i e−iπ/4
∑

m≥1

Ej
m

∫ t

0

〈
∂φλ

∂ηj
χj

m

〉

j

I1/2

(〈
∂φλ

∂ηj
χj

m

〉

j

)
ds ≤ 0.

Then we deduce that

<
∑

j

∫ t

0

〈
∂ψλ

∂ηj
∂tψλ

〉

j

ds ≤ R1 +R2 +R3,

where

R1 = <
∑

j

∫ t

0

〈
∂ψpw

λ

∂ηj

∂tψλ

〉

j

ds ; R2 = −=
∑

j

∫ t

0

Vj

〈
∂φλ

∂ηj

φλ

〉

j

ds

and

R3 = <
∑

j

∫ t

0

〈
∂φλ

∂ηj

∂tψ
pw
λ

〉

j

ds.
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Let us estimate R1, R2 and R3 separately. For R1, an integration by parts and
standard trace estimates lead to

R1 ≤ ‖ψ0
λ‖H2(Ω0)

(
‖ψ0

λ‖H1(Ω0) + ‖ψλ(t)‖H1(Ω0) + C

∫ t

0

‖ψλ(s)‖H1(Ω0)ds

)
. (3.32)

In order to treat the term R2, we set Ṽ (t, x) :=
∑

j µj(x)Vj(t) and remark that

R2 = −=
∫ t

0

∫

Ω0

∇φλ · ∇(Ṽ φλ) dx ds+ =
∫ t

0

∫

Ω0

∆φλṼ φλ dx ds.

Therefore (3.13) gives

R2 =
1

2

∫ t

0

∫

Ω0

∂s|φλ|2 Ṽ dx ds−=
∫ t

0

∫

Ω0

Sλ φλ Ṽ dx ds−=
∫ t

0

∫

Ω0

∇φλ ·∇Ṽ φλ dx ds.

Straightforward algebra leads to
∫ t

0

∫

Ω0

∂s|φλ|2 Ṽ dx ds ≤ C‖φλ(t)‖2
L2(Ω0) + C

∫ t

0

‖φλ(s)‖2
L2(Ω0)ds,

=
∫ t

0

∫

Ω0

Sλ φλ Ṽ dx ds ≤ C‖ψ0
λ‖H2(Ω0)

∫ t

0

(
1 + ‖V (s)‖L2(Ω)

)
‖φλ(s)‖L2(Ω0)ds,

=
∫ t

0

∫

Ω0

∇φλ φλ ∇Ṽ dx ds ≤ C

∫ t

0

‖φλ(s)‖2
H1(Ω0)ds.

Since
‖φλ(t)‖L2(Ω0) ≤ ‖ψ0

λ‖L2(Ω0) + ‖ψλ(t)‖L2(Ω0),

we obtain, thanks to (3.26),

R2 ≤ C‖ψ0
λ‖2

H2(Ω0) + C

∫ t

0

(
1 +

1√
πs

)
‖ψλ(s)‖2

H1(Ω0)ds

+C‖ψ0
λ‖H2(Ω0)

∫ t

0

‖V (s)‖L2(Ω)

(
‖ψ0

λ‖L2(Ω0) + ‖ψλ(s)‖L2(Ω0)

)
ds. (3.33)

To complete the proof of (3.27), it remains to treat the term R3. For this purpose,
we use again the Schrödinger equation (3.13). Taking the L2(Ω0) scalar product of

(3.13) with ∂tψ
pw
λ , taking the real part and integrating over [0, t] leads to

R3 = =
∫ t

0

∫

Ω0

∂tφλ ∂tψ
pw
λ dxds+ <

∫ t

0

∫

Ω0

∇φλ ∇∂tψ
pw
λ dxds (3.34)

+<
∫ t

0

∫

Ω0

V φλ ∂tψ
pw
λ dxds− <

∫ t

0

∫

Ω0

Sλ ∂tψ
pw
λ dxds. (3.35)

Straightforward calculations coupled to (3.26) imply

R3 ≤ C‖ψ0
λ‖2

H1(Ω0) + C‖ψ0
λ‖H2(Ω0)

∫ t

0

(
1 +

1√
πs

)
‖ψλ(s)‖H1(Ω0)ds

+C‖ψ0
λ‖H2(Ω0)

∫ t

0

‖V (s)‖L2(Ω)

(
‖ψ0

λ‖L2(Ω0) + ‖ψλ(s)‖L2(Ω0)

)
ds.

(3.36)
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The proof is complete after gathering (3.33), (3.32) and (3.36).

4 Local-in-time existence and uniqueness

In this section, we prove that the system (2.3)-(2.5) has a unique local solution. We
use a fixed point argument for the self-consistent Vs. Starting from a given potential
Vs, we define the application F(Vs) by

−∆F(Vs) = n [Vs] =

∫

Λ

|ψλ [Vs] |2dµ(λ) ; x ∈ Ω0 ; F(Vs) |∂Ω0
≡ 0 (4.1)

where ψλ [Vs] is given by

i∂tψλ = H(t)ψλ ; ψλ(0, ·) = ψ0
λ ; x ∈ Ω (4.2)

H(t) = −∆ + Ve(t, x) + Vs(t, x) (4.3)

with Ve belonging to the class V. The fact that F admits a unique fixed point for
small times is a straightforward corollary of the following proposition:

Proposition 4.1 Under hypothesis (H-1)–(H-4), there exists a time t0 such that
the application F is contraction on C1([0, t0], L

∞(Ω0)) ∩ C0([0, t0], H
1
0 (Ω0)).

Proof. For notational simplicity, let

X := C1([0, t0], L
∞(Ω0)) ∩ C0([0, t0], H

1
0(Ω0)).

We first check that F(X) ⊂ X. It is straightforward to see that V := Ve +Vs belongs
to the class V, so that one can apply the results of Section (3). Since ψ0

λ ∈ H2
loc(Ω),

Proposition (3.2) (i) applies and (4.2)-(4.3) admits a unique solution ψλ [Vs] ∈ E+ψpw
λ

such that, for all t in [0, t0],

∫

Λ

‖ψλ(t)‖2
H2

loc(Ω) dµ(λ) ≤ C(Vs).

Furthermore, the embedding H2(Ω0) ↪→ L∞(Ω0), for d ≤ 3, implies that n [Vs] ∈
C0([0, t0], L

∞(Ω0)) and by (4.1), the elliptic regularity gives

F(Vs) ∈ C0([0, t0],W
2,q(Ω0)) ∩ C0([0, t0], H

1
0 (Ω0)), ∀q <∞.

Besides, in order to estimate ∂tF(Vs), we introduce nλ and jλ defined by

nλ = |ψλ|2 ; jλ = =(ψλ∇ψλ).

The charge conservation identity yields

∂tnλ + div jλ = 0. (4.4)
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By (4.1) and (4.4), ∂tF(Vs) solves

∆ ∂tF(Vs) = divJ(Vs) ; x ∈ Ω0 ; ∂tF(Vs) |∂Ω0
≡ 0 (4.5)

where

J =

∫

Λ

jλ dµ(λ).

Thanks to hypothesis (H-2) and the Jensen inequality, we have

‖J(t)‖L6(Ω0) ≤ C

(∫

Λ

‖ψλ(t)‖2
W 1,6(Ω0) dµ(λ)

)1/2 (∫

Λ

‖ψλ(t)‖2
L∞(Ω0) dµ(λ)

)1/2

and the Sobolev embeddings H2(Ω0) ↪→ L∞(Ω0) and H2(Ω0) ↪→W 1,6(Ω0), for d ≤ 3,
give a bound for J in C([0, t0], L

6(Ω0)). This implies, together with (4.5) and standard
elliptic regularity estimates , that ∂tF(Vs) ∈ C([0, t0],W

1,6
0 (Ω0)). Thanks to the

embedding W 1,6(Ω0) ↪→ L∞(Ω0), for d ≤ 3, we deduce that

∂tF(Vs) ∈ C0([0, t0], L
∞(Ω0)).

This proves that F(Vs) ∈ X.

We now prove that F is a contraction for t0 small enough. Given two potentials
Vs and Ṽs in an open ball of X with radius R, let us denote by ψλ and ψ̃λ the
associated wavefunctions, belonging to E + ψpw

λ . We have

−∆
(
F(Vs) −F(Ṽs)

)
= n(Vs) − n(Ṽs) (4.6)

∆ ∂t

(
F(Vs) − F(Ṽs)

)
= J(Vs) − J(Ṽs). (4.7)

In order to control n(Vs) − n(Ṽs) and J(Vs) − J(Ṽs), we first estimate the quantity

wλ := ψλ − ψ̃λ thanks to the Schrödinger equation (4.2). According to (4.2) and
(4.3), wλ solves

i∂twλ = −∆wλ + (Ve + Vs)wλ + (Vs − Ṽs)ψ̃λ ; wλ(0, ·) = 0. (4.8)

Since Ve + Vs ∈ C1([0, t0], L
∞(Ω)) and (Vs − Ṽs)ψ̃λ ∈ C1([0, t0], L

2(Ω)), Lemma (3.1)
applies. Then (3.7), (3.8), (3.2) and (3.4) imply

‖wλ(t)‖L2(Ω) ≤ CR t0 ‖ψ0
λ‖H1(Ω) ‖Vs − Ṽs‖C0([0,t0],L∞(Ω0)) (4.9)

‖wλ(t)‖H2(Ω) ≤ CR‖ψ0
λ‖H1(Ω)‖Vs − Ṽs‖C1([0,t0],L∞(Ω0)) (4.10)
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To estimate the difference n(Vs) − n(Ṽs), we take advantage of (3.8) and of the
embedding H2(Ω0) ↪→ L∞(Ω0) as well as (4.9), and obtain

‖n(Vs) − n(Ṽs)‖L2(Ω0)(t)

≤
(∫

Λ

‖ψλ + ψ̃λ‖2
L∞(Ω0)(t) dµ(λ)

)1/2(∫

Λ

‖wλ(t)‖2
L2(Ω0) dµ(λ)

)1/2

≤ CR

(∫

Λ

‖ψ0
λ‖2

H2(Ω0) dµ(λ)

)1/2 (∫

Λ

‖wλ(t)‖2
L2(Ω0) dµ(λ)

)1/2

≤ CR t0 ‖Vs − Ṽs‖C0([0,t0],L∞(Ω0))

(4.11)

Let us now treat the term J(Vs)−J(Ṽs): after straightforward computations and the
use of the embeddings H2(Ω0) ↪→ L∞(Ω0), W

1,7/2(Ω0) ↪→ L∞(Ω0) and H2(Ω0) ↪→
W 1,7/2(Ω0), we obtain

‖J(Vs) − J(Ṽs)‖L7/2(Ω0)(t)

≤ C

(∫

Λ

‖ψλ + ψ̃λ‖2
H2(Ω0)(t) dµ(λ)

)1/2 (∫

Λ

‖wλ(t)‖2
W 1,7/2(Ω0) dµ(λ)

)1/2

.

(4.12)

Then, a Gagliardo-Nirenberg interpolation inequality, together with (4.9) and (4.10),
leads to

‖wλ(t)‖W 1,7/2(Ω0) ≤ C‖wλ(t)‖13/14
H2(Ω0) ‖wλ(t)‖1/14

L2(Ω0) (4.13)

≤ CR t
1/14
0 ‖ψ0

λ‖H1(Ω)‖Vs − Ṽs‖C1([0,t0],L∞(Ω0)). (4.14)

Coming back to (4.12) and using (3.8), we have finally

‖J(Vs) − J(Ṽs)‖L7/2(Ω0)(t) ≤ CR t
1/14
0 ‖Vs − Ṽs‖C1([0,t0],L∞(Ω0)). (4.15)

We are able now to estimate the difference F(Vs) − F(Ṽs) in X. Indeed, from (4.6)
and (4.11) we deduce

‖F(Vs) − F(Ṽs)‖C0([0,t0],H2(Ω0)) ≤ CR t0 ‖Vs − Ṽs‖C0([0,t0],L∞(Ω0)).

Next, from (4.7), (4.12) and the embedding W 1,7/2(Ω0) ↪→ L∞(Ω0), we obtain

‖∂tF(Vs) − ∂tF(Ṽs)‖C0([0,t0],L∞(Ω0)) ≤ C‖∂tF(Vs) − ∂tF(Ṽs)‖C0([0,t0],W 1,7/2(Ω0))

≤ CR t
1/14
0 ‖Vs − Ṽs‖C1([0,t0],L∞(Ω0)) (4.16)

The proof is completed by choosing t0 small enough.
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5 Energy estimate and global existence result

In this section, we give the proof of Theorem (2.5). To this aim, we prove an
energy estimate which allows to extend the local solution of the last section for
any arbitrarily large positive time. The proof crucially uses the sublinearity of the
estimate (3.26).

Consider the local solution ψλ constructed in the last section. This solution
satisfies the estimates (3.26) and (3.27). Let us define the total energy by

ε(t) =

∫

Λ

‖ψλ(t)‖2
H1(Ω0) dµ(λ) +

1

2
‖∇Vs(t)‖2

L2(Ω0).

By integrating (3.26) and (3.27) w.r.t. the measure dµ and by using (H-3), we
obtain the relations

‖n(t)‖L1(Ω0) ≤ C + C

(∫ t

0

(
1 +

1√
πs

)
ε(s)ds

)1/2

, (5.1)

ε(t) ≤ C + C

∫ t

0

(
1 +

1√
πs

)
ε(s)ds

+C

∫ t

0

‖Vs(s)‖L2(Ω)

(
1 + ‖n(s)‖1/2

L1(Ω0)

)
ds

+
1

2
‖∇Vs(t)‖2

L2(Ω0) −
∫ t

0

∫

Ω0

Vs ∂tn dx ds−
∫ t

0

∫

Ω0

Ve ∂tn dx ds.

(5.2)

To estimate the r.h.s. of (5.2), we need to control the L2 norm of Vs. For this
purpose, we deduce from elliptic regularity of the Poisson equation with an L1(Ω0)
right hand side, that

‖Vs(t)‖W 1,p(Ω0) ≤ C‖n(t)‖L1(Ω0), 1 ≤ p < 3/2.

Next, from the Sobolev embedding W 1,p(Ω0) ↪→ Lq(Ω0) for q ≤ 3p
3−p

, we deduce that

‖Vs‖L2(Ω0) ≤ C‖n‖L1(Ω0).

This implies in view of (5.1), that∫ t

0

‖Vs(s)‖L2(Ω0)

(
1 + ‖n(s)‖1/2

L1(Ω0)

)
ds

≤ C + C

(∫ t

0

(
1 +

1√
πs

)
ε(s)ds

)3/4

. (5.3)

Furthermore, the Poisson equation gives

1

2
‖∇Vs(t)‖2

L2(Ω0) −
∫ t

0

∫

Ω0

Vs ∂tn dx ds =
1

2
‖∇Vs(0)‖2

L2(Ω0), (5.4)
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and an integration by parts with respect to time gives

∫ t

0

∫

Ω0

Ve ∂tn dx ds ≤ C + C‖n(t)‖L1(Ω0) + C

∫ t

0

‖n(s)‖L1(Ω0)ds

≤ C + C

(∫ t

0

(
1 +

1√
πs

)
ε(s)ds

)1/2

,

(5.5)

where we used (H-4). Therefore, in view of (5.3), (5.4) and (5.5), (5.2) leads to

ε(t) ≤ C +
1

2
‖∇Vs(0)‖2

L2(Ω0) + C

∫ t

0

(
1 +

1√
πs

)
ε(s)ds.

Since it is clear by (H-4) and the Poisson equation that ‖∇Vs(0)‖L2(Ω0) ≤ C, a
Gronwall argument leads to the a priori estimate

ε(t) ≤ CT , ∀t ∈ [0, T ]. (5.6)

To show the regularity property announced in Theorem (2.5), we use again the
Poisson and Schrödinger equations. We first notice that, thanks to (5.6), the Poisson
equation (2.5) and the embedding H1(Ω0) ↪→ L6(Ω0), we have

n ∈ C0([0, T ],W 1,3/2(Ω0)) ; J ∈ C0([0, T ], L3/2(Ω0)),

V ∈ C0([0, T ],W 3,3/2(Ω0)) ; ∂tV ∈ C0([0, T ],W 1,3/2(Ω0)). (5.7)

Besides, according to (3.13), uλ := ∂tφλ = ∂tψλ − ∂tψ
pw
λ solves





i
∂uλ

∂t
= −∆uλ + V uλ + ∂tV φλ − ∂tSλ(V ) in Ω

uλ(0, x) = iSλ(V )(0, x)

and we obtain directly

‖∂tφλ(t)‖L2(Ω0) ≤ ‖Sλ(V )(0, ·)‖L2(Ω0) + ‖∂tV φλ + ∂tSλ(V )‖L1((0,T ),L2(Ω0)).

The embeddings W 1,3/2(Ω0) ↪→ L3(Ω0), H
1(Ω0) ↪→ L6(Ω0) and (5.6) imply that

∫

Λ

‖∂tV φλ‖2
L1((0,T ),L2(Ω0))dµ(λ) ≤ C

and (3.16), (5.7) give
‖∂tSλ(V )‖L1((0,T ),L2(Ω0)) ≤ C.

Finally, this leads to

∫

Λ

‖∂tφλ(t)‖2
L2(Ω0)dµ(λ) ≤ C, ∀t ∈ [0, T ].
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From the Schrödinger equation ∆φλ = −i∂tφλ + V φλ − Sλ we deduce that

∫

Λ

‖ψλ(t)‖2
H2(Ω0)dµ(λ) ≤ C.

The proof is completed after noticing that

n ∈ C0([0, T ], H2(Ω0)) ; J ∈ C0([0, T ], H1(Ω0));

which yields, through elliptic estimates, the regularity of Vs stated in Theorem (2.5).
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