
Entropic discretization of a

Quantum Drift-Diffusion model

Samy Gallego and Florian Méhats
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Abstract

This paper is devoted to the discretization and numerical simulation of
a new quantum drift-diffusion model that was recently derived. In a first
step, we introduce an implicit semi-discretization in time which possesses some
interesting properties: this system is well-posed, it preserves the positivity of
the density, the total charge is conserved, and it is entropic (a free energy
is dissipated). Then, after a discretization of the space variable, we define a
numerical scheme which has the same properties and is equivalent to a convex
minimization problem. Moreover, we show that this discrete solution converges
for long times to the solution of a discrete Schrödinger-Poisson system. These
results are illustrated by some numerical simulations.

Key words : Quantum drift-diffusion, Schrödinger-Poisson, entropic scheme, con-
vex minimization, long-time behavior.

1 Introduction

Recently, Degond and Ringhofer [15, 16] have explored a new direction for quantum
hydrodynamic models by extending Levermore’s moment approach [33] to the con-
text of quantum mechanics. Their strategy consists in defining a notion of “local”
quantum equilibrium as the minimizer of an entropy functional under local moment
constraints. Such equilibria are defined thanks to a relation between the thermody-
namic quantities (such as the chemical potential or the temperature) and the exten-
sive quantities (the densities) in a non local way. In [15], quantum hydrodynamic
(QHD) models have been derived from quantum kinetic equations by moment expan-
sions closed by these quantum equilibria. In this reference, Degond and Ringhofer
have also sketched an important program related to these QHD models, including
namely the setting up of a rigourous framework to this formal modeling, the inclusion
of other quantum effects (Pauli exclusion principle, spin effects,. . . ), or the numerical
discretization and simulation. Following the same approach, these authors have then
introduced in [17] a family of ad-hoc collision operators which decrease the quantum
entropy and relax to the equilibria. Afterwards, this strategy was applied in [13] in
order to derive quantum diffusive models: a quantum drift-diffusion model (QDD)
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and a quantum energy-transport model (QET). In a work in progress [8], other dif-
fusive models of the type of the Spherical Harmonic Expansion (SHE) model are also
constructed in the quantum framework.

All these fluid models are written as conservation laws coupled to constitutive
equations. The quantum character of these models lies in these constitutive equa-
tions, which are non local in space and make these systems difficult to analyze (these
papers [15, 13] remained at a formal level). However, an interesting property of
these models is that –at least formally– a fluid entropy functional is dissipated. This
feature gives an indication of the well-posedness of these systems; besides, it is inter-
esting to recall that the entropic property is obtained as a by-product of the strategy
of entropy minimization.

In this paper, we are interested in the quantum drift-diffusion (QDD) model, with
two objectives. Firstly, the present work is a first step in the rigourous analysis of
this system, coupled to the Poisson equation. Secondly, we study the discretization
of this system and its numerical simulation.

Let us now describe the main results of this paper. The QDD system is given by
(2.7)–(2.9). Actually, we are not able yet to answer the question of the well-posedness
of this system. Nevertheless, we introduce, instead, and analyze rigourously a semi-
discretized (in time) version of this model, defined by (3.1)–(3.3), and which presents
the same entropy dissipation property as the QDD system. This first set of results
is given in Theorem 3.1. Next, concerning the second objective of the paper, the
implicit numerical scheme (4.1)–(4.3) is defined. This scheme is well-posed and
equivalent to a problem of convex minimization. Then, we show that this scheme is
stable in the sense of a discrete entropy. Finally, we analyze the long-time behavior
of its discrete solution and we show that it converges to a discrete steady state. All
these results concerning the numerical scheme are stated in Theorem 4.1.

We end this introduction with bibliographical notes on quantum transport mod-
eling. The quantum drift-diffusion system applies to the modeling of nanoscale semi-
conductor devices. In the semiconductor industry, the classical drift-diffusion model
has been a valuable tool for many years [11, 28, 35, 37, 48]. Currently, the ongo-
ing miniaturization of electronic devices to the nanometer scale creates the need of
models which take into account quantum effects. To this aim, two strategies can be
followed.

The first approach, with a radical change in the level of description, consists in
choosing full quantum models such as the Schrödinger equation, the von Neumann
equation or the Wigner equation [4, 9, 12, 18, 19, 32, 38, 45, 46]. These models are
well fitted for very small devices but they lead to the resolution of huge numerical
systems at the intermediate scale which is currently considered by electronic engi-
neers. Another reason why this approach is limited to very small devices is that the
question of describing collisions in quantum transport models is extremely difficult
and has not received a completely satisfactory answer yet. Therefore, full quantum
models are still mainly reserved to ballistic transport in small devices.

The opposite strategy consists in introducing quantum correction terms in the
classical drift-diffusion model. The most common quantum correction involves the
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Bohm potential, which naturally appears in quantum hydrodynamics, thanks to
an analogy between the Schrödinger equation and the pressureless Euler system
corrected with the Bohm potential. This analogy can be seen thanks to the Madelung
transformation [34, 50], by considering the equations satisfied by the amplitude and
the phase of a wavefunction solving the Schrödinger equation (see e.g. [13] for more
details). Next, assuming that adding this Bohm potential enables to model quantum
effects in classical macroscopic systems, several models with corrective terms have
been written. In a fluid context, hydrodynamics models with quantum corrections
have been studied in [22, 23, 24, 25, 26, 27, 29, 44, 51]. In a diffusive context, and
closest to the QDD model studied in this paper, one can find the drift-diffusion
model corrected with the Bohm potential, called density-gradient model (it is also
sometimes called quantum drift-diffusion model, but in this paper we shall refer it
as density-gradient model, in order to avoid any confusion with the QDD model
presented here). This model was introduced in [1, 2], then mathematically and
numerically studied in [3, 7, 29, 30, 41, 42]. An advantage of such an approach is that
it takes into account collisions, at least heuristically. Another strength is that, as this
method is based on an evolution of the classical drift-diffusion model, the numerical
codes currently employed in semiconductor industry can be adapted by following this
evolution. Nevertheless, one has to insist on the fact that the justification of these
models is far from obvious in the case of statistical mixtures (several attempts were
made to address this issue, see for instance [22, 23, 24, 27]). Moreover, quantum
corrections involving the Bohm potential produce high order terms in these systems
and make their resolution difficult, from the mathematical and from the numerical
point of view. To conclude this description, one can also cite two other recent
attempts to model quantum effects in diffusive models [6, 43]. The models presented
in these works are different but both take the form of a drift-diffusion equation,
coupled to the Poisson equation, and where the quantum phenomena are taken
into account by a modification of the link between the density and the quasi-Fermi
potential, via the resolution of a quasistatic Schrödinger equation.

As a compromise, the quantum drift-diffusion (QDD) model studied in the present
paper tries to conciliate these two approaches: this model is really quantum and non
local, while the length scales are macroscopic and collisions are modelled. Indeed, as
it is shown in Section 2.3, the steady states of the QDD model solve the Schrödinger-
Poisson system studied in [31, 39, 40]: this shows the quantum character of this
model. Besides, it has been shown in [13] that, at least formally, the limit of the
QDD model as ~ goes to zero is the classical drift-diffusion model, while the leading
order correction term in an ~ expansion is the Bohm potential: this shows a clear
link between the QDD model and the density-gradient model described above.

The paper is organized as follows: in Section 2, we write a formulation of the
QDD model in a bounded domain and give some of its properties. Then, in Section 3,
we define the semi-discretization in time of the QDD system and show that this new
system is well-posed and entropic. In Section 4, the numerical scheme is constructed
and we analyze its properties (well-posedness, stability, long-time behavior). Finally,
in Section 5 we illustrate these properties by some numerical simulations.
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2 The quantum drift-diffusion model

This section is devoted to the presentation of the quantum drift-diffusion model
(QDD). It is not clear which precise functional framework would be adapted to a
rigourous analysis of this system. Nevertheless, we can still state some properties
satisfied by any smooth solution of this system. This enables to put into perspective
the results of Section 3. Indeed, we shall see in Section 3 that similar properties are
satisfied by the solutions of the semi-discretized QDD system (3.1)–(3.3), whereas
their existence can be rigourously proved.

2.1 Notations: the QDD model on a bounded domain

Let us first give a formulation of the quantum drift-diffusion model in the case of
bounded domains. This model, which describes the evolution of a quantum system
of electrons, was derived in [13] and a most convenient equivalent form of this model
was written in the review paper [14]. The first equation is the equation of mass
conservation:

∂tn+ div j = 0. (2.1)

The second equation of the model is the constitutive equation which gives the ex-
pression of the current:

j = n∇(A− V ). (2.2)

In this equation, V (t, x) is the selfconsistent potential (modeling the interactions
between the electrons) and A(t, x) is the quantum chemical potential, linked to the
density by a relation which is non local in space and which is the key of this quantum
model. In order to make this relation explicit, let us introduce the operator

H[A] = −~
2∆ + A+ V ext,

where ~ is a positive dimensionless parameter (~−2 is proportional to the temperature
of the system), whose domain D(H) will be precised below. Here, V ext(x) is an
external potential applied to the system (assumed independent of time for simplicity).
In the QDD model, the electron system is at any time in a local quantum equilibrium
(see [15, 13]) and its density matrix is

% = exp (−H[A]) , (2.3)

where exp denotes here the exponential of the operator. Remark that when the
chemical potential A differs from the electrical potential, the operator H[A] is not
the Hamiltonian and % is not the density matrix of a global quantum equilibria as
defined usually [5]. A consequence of this formula (2.3) is the relation between the
density and the chemical potential, given in a weak sense by:

∀φ
∫
nφ dx = tr (exp (−H[A]) φ) (2.4)
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(here we used the usual convention where, implicitely in the right-hand side of this ex-
pression, φ stands for the operator of multiplication by φ). Finally, the last equation
of the model is the Poisson equation, which links the density and the selfconsistent
potential:

−α∆V = n. (2.5)

In this equation, α is a positive dimensionless parameter (which is proportional to the
square of the Debye length of the system); a given background charge density may
be taken into account in this model, for instance, by a modification of the external
potential V ext and a shift of the chemical potential A.

Let Ω ∈ R
d be a regular bounded domain (d ≤ 3). Its boundary is denoted by

∂Ω and ν(x) is the outward unit normal vector at x ∈ ∂Ω. All the unknowns of the
system n(t, x), j(t, x), A(t, x), V (t, x) are defined for t ≥ 0 and x ∈ Ω. Now we need
to precise the boundary conditions for this system. The most simple ones, that will
be studied in this paper, prescribe a vanishing current at the boundary. This no-flux
boundary condition takes the form of the Neumann condition:

∇(A− V ) · ν = 0 on ∂Ω.

For the selfconsistent potential, we consider a Dirichlet boundary condition

V = 0 on ∂Ω.

It remains to fix the domain of the Hamiltonian H[A]. In the Note [21], the QDD
model was written with Dirichlet boundary conditions for the wavefunctions, as well
as its discrete version. Here, for technical reasons which will be explained further
(at the end of the proof of Lemma 2.4), Neumann boundary conditions are chosen:

D(H) =
{
φ ∈ H2(Ω) : ∇φ · ν = 0 on ∂Ω

}
.

Hence, if A belongs to –say– L2(Ω), then the operator H[A] is bounded from below
and has a compact resolvent. Let us denote by (χp[A])p=1,···,∞ an orthogonal basis
of eigenfunctions, associated to the eigenvalues λ1[A] ≤ λ2[A] ≤ · · · ≤ λp[A] ≤ · · ·.
The non local relation (2.4) between n and A takes a more explicit form:

n[A] =
∑

p≥1

e−λp[A] |χp[A]|2. (2.6)

To summarize this part, one can write the quantum drift-diffusion model includ-
ing self-consistent effects as follows:

∂tn + div (n∇(A− V )) = 0, (2.7)

−α∆V = n, (2.8)

n =
∑

p

e−λp[A] |χp[A]|2, (2.9)
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where (λp[A], χp[A])p denote the eigenvalues and the eigenfunctions of the Hamil-
tonian H[A] = −~

2∆ +A+ V ext whose domain is D(H) = {ψ ∈ H2(Ω) : ∂νψ = 0}.
The unknowns of this system are subject to the following no-flux boundary conditions
on ∂Ω:

V = 0 ; ∂ν(A− V ) = 0 (∂Ω) (2.10)

and to a Cauchy datum n0(x).

In this paper, the assumptions on the data will be the following ones:

Assumption 2.1 The initial datum n0 is continuous and positive on Ω.

Assumption 2.2 The external potential V ext is nonnegative and belongs to L∞(Ω).

2.2 Technical lemmas: the relation between n and A

In this subsection, we gather some technical lemmas that are used in this paper.
The first lemma, which is given without proof, is directly adapted from [40] (the
only difference lies in the domain D(H); in [40], a Dirichlet boundary condition was
considered instead of our Neumann boundary condition).

Lemma 2.3 The map F defined by

A ∈ H1(Ω) 7→ F [A] := tr
(
e−H[A]

)
=

∫
n[A] dx (2.11)

is well-defined, Fréchet C∞ and strictly convex. Its first derivative in the direction
φ ∈ H1(Ω) reads

dAF · φ = −tr
(
e−H[A] φ

)
= −

∫
n[A]φ dx (2.12)

and its second derivative reads

d2
AF · φ · φ = −

∞∑

p=1

∞∑

q=1

e−λp[A] − e−λq [A]

λp[A] − λq[A]

∣∣∣∣
∫
φχp χq dx

∣∣∣∣
2

, (2.13)

where e−λp[A]−e−λq [A]

λp[A]−λq [A]
conventionally equals −e−λp[A] if λp[A] = λq[A].

Remark that this lemma gives a sense to the formula (2.6) as soon as A belongs to
H1(Ω).

Lemma 2.4 Let A ∈ H1(Ω). Then the function n[A] defined by (2.6) is a continuous
function on Ω. If in addition we have A ∈ L∞(Ω) then n[A] does not vanish on Ω.
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Proof. Again, the first part of this lemma is proved in [40]. Let us nevertheless
give a sketch of the argument. For any n ∈ N

∗, the operator (1 + H[A]2)n/2e−H[A]

is trace class (with a bound depending only on the H1 norm of A). Moreover, the
following estimate holds for the eigenfunctions:

‖χp[A]‖H2(Ω) ≤ C(A) (1 + λp[A]2)1/2,

where C(A) is a constant which depends only on the H1 norm of A. Since H2(Ω)
is an algebra (in the considered dimension d ≤ 3), the series (2.6) defining n[A]
converges in H2(Ω) and, by Sobolev embedding, n[A] is continuous.

The second part of the lemma is a direct consequence of Krein-Rutman’s the-
orem [10]. Here we use the fact that A + V ext is bounded from below, thanks to
A ∈ L∞(Ω) and thanks to Assumption 2.2. It is important to precise that we have
chosen the Neumann boundary conditions for the χp’s (instead of Dirichlet boundary
conditions) in order to garantee the fact that n does not vanish on the closed domain
Ω.

Remark 2.5 The assumptions of this Lemma 2.4 are sufficient for a use in our
context, since the chemical potential A will always belong to H 2(Ω), but one has
to say that these assumptions are not optimal and can be weakened. For instance,
A ∈ L2(Ω) would lead to the same result, as it can be seen from [31] and [47].

Lemma 2.6 Let A and Ã belong to H1(Ω) and, using the notation (2.6), let n =

n[A], ñ = n[Ã]. Then we have

∫ (
n(A− Ã) + n− ñ

)
dx ≤ 0. (2.14)

Proof. The functional F [A] defined in Lemma 2.3 is convex, thus we have the
inequality:

F [Ã] − F [A] ≥ dAF · (Ã− A).

The desired result is a consequence of the expression (2.12) of dAF .

2.3 Steady states and entropy dissipation

The steady states of the QDD system are well-known: these are the solutions of the
Schrödinger-Poisson system studied by Nier in [40]. Following this reference, the
following Proposition can be proved (its proof is left to the reader):

Proposition 2.7 Let N > 0 and let (n,A, V ) be a steady state of (2.7)–(2.9) such
that

∫
n(x) dx = N . Assume that n is continuous and positive on Ω. Then there
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exists a constant εF such that A = V − εF and (n, V, εF ) is the unique solution of the
Schrödinger-Poisson system under a constraint of total charge:





−~
2∆χp + (V + V ext)χp = λp χp (p = 1, · · · ,∞)

χp ∈ D(H) ;

∫
χp χq = δpq ,

(2.15)

−α∆V = n =
∑

p

eεF−λp |χp|2, V ∈ H1
0 (Ω), (2.16)

∫
n(x) dx = N. (2.17)

Next, the following formal result shows that the QDD system coupled with the
Poisson equation is entropic:

Proposition 2.8 Let (n,A, V ) be a smooth solution of (2.7)–(2.9). Then the fol-
lowing properties hold:
(i) The following free energy S(t) is a decreasing function of time and is bounded
from below (by a negative constant depending only on Ω and ~):

S(t) = −
∫
n (A+ 1) dx+

α

2

∫
|∇V |2 dx.

(ii) If (n∞, A∞, V∞) is the solution of (2.15)–(2.17) corresponding to N =
∫
n(0, x) dx,

then the following relative entropy Σ(t) is the sum of two nonnegative terms and is
a decreasing function of time:

Σ(t) = −
∫

(n (A− A∞) + n− n∞) dx+
α

2

∫
|∇(V − V∞)|2dx.

Proof. By applying (2.14) with Ã ≡ 0, we get

−
∫
n (A+ 1) ≥ −

∫
n[0] dx.

Assumption 2.2 gives V ext ≥ 0. Hence, by the min-max formula, the eigenvalues
λp[0] of H[0] = −~

2∆ + V ext satisfy λp[0] ≥ λ∆
p , where λ∆

p are the eigenvalues of
−~

2∆ with Neumann boundary conditions on ∂Ω. Thus we have
∫
n[0] dx ≤

∑

p

e−λ∆
p

and S is bounded from below by a constant which depends only on Ω and ~.
Let us now remark that, due to the no-flux boundary conditions (2.10), an inte-

gration of the first equation of (2.7)–(2.9) yields the conservation of the total charge:

∀t ≥ 0

∫
n(t, x) dx =

∫
n(0, x) dx. (2.18)

8



Independently, by differentiating with respect to time the functional F [A] defined by
(2.11), and recalling that V ext is independent of time, we get

d

dt

∫
n(t, x) dx =

d

dt
F [A(t)] = dAF · ∂tA = −

∫
n(t, x) ∂tA(t, x) dx,

thus we have
d

dt

∫
n (A+ 1) dx =

∫
(∂tn)Adx.

To prove Item (i), it remains to remark that the Poisson equation with Dirichlet
boundary conditions yields

d

dt

α

2

∫
|∇V |2 dx =

∫
(∂tn)V dx.

Consequently we obtain

d

dt
S(t) = −

∫
(∂tn)(A− V )dx = −

∫
n |∇(A− V )|2 dx ≤ 0, (2.19)

which proves (i). Let us now prove (ii). The fact that the first term of Σ(t) is
nonnegative stems from (2.14). Besides, since we have A∞ = V ∞ − εF , we deduce
the equivalent expression:

Σ(t) = −
∫

(n (A+ εF ) + n− n∞) dx

+α

∫
∇V · ∇V ∞ dx +

α

2

∫
|∇(V − V ∞)|2

= S(t) − εF

∫
n dx+

∫
n∞ dx+

α

2

∫
|∇V∞|2 dx,

where we used the Poisson equation −α∆V = n. Therefore, by using (2.18), we
deduce

d

dt
Σ(t) =

d

dt
S(t) ≤ 0.

Remark 2.9 Eq. (2.19) gives the expression of the entropy dissipation. This term
indicates that, in long time, A − V should converge towards a constant. Thus any
transient solution of the QDD model should converge to the (unique) corresponding
steady state. In order to prove rigourously this convergence, we need to control n
from below. This is an open problem in the continuous case (2.7)–(2.9), but this
question finds an answer in the discrete model presented in Section 4 (see Theorem
4.1, (iv)).
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3 Semi-discretization in time

As announced in the introduction, this section is devoted to the study of a semi-
discrete version of (2.7)–(2.9), which presents the advantage to be rigourous analyzed
(existence and uniqueness, entropy dissipation). Notice that this part also appears
as a first step towards the numerical scheme that is presented in Section 4.

Let ∆t > 0 be the time step. For k ∈ N, the semi-discretized model is written:

nk+1 − nk

∆t
+ div

(
nk∇(Ak+1 − V k+1)

)
= 0, (3.1)

−α∆V k+1 = nk+1, (3.2)

nk+1 =
∑

p

e−λp[Ak+1] |χp[A
k+1]|2, (3.3)

subject to the boundary conditions

V k+1 = 0 ; ∂ν(A
k+1 − V k+1) = 0. (3.4)

Recall that, in this system, λp[·] and χp[·] denote the whole sequence of eigenvalues
and eigenfunctions of the operator H[·] defined in Section 2.1. The unknowns are the
functions nk(x), Ak(x), V k(x), for k ∈ N

∗. For k = 0, the density n0 is given satis-
fying Assumption 2.1. Then the Poisson equation enables to define V 0. Concerning
the initial chemical potential A0, since it is not clear whether (2.6) can be inverted,
we choose to let A0 undetermined. Remark that A0 is not required in this model
to compute (nk, Ak, V k) for k ≥ 1. An alternative choice for the initial conditions
would be to take an initial datum A0, then to deduce n0 by (2.6) and V 0 by the
Poisson equation. However, it seems more interesting, for physical reasons, to start
from an initial density n0.

The main result of this section is the

Theorem 3.1 Under Assumptions 2.1 and 2.2, we have the following properties:
(i) The semi-discretized model (3.1)–(3.3) is well-posed. For all k ∈ N

∗, the functions
Ak ∈ H1(Ω), V k(Ω) ∈ H1

0 (Ω) and nk ∈ C(Ω) are uniquely defined. Moreover, for all
k we have nk > 0 on Ω and the total charge is conserved:

∫
nk dx =

∫
n0 dx. (3.5)

(ii) The following free energy Sk, defined for k ≥ 1, is bounded from below and
decreases as k increases:

Sk = −
∫
nk (Ak + 1) dx+

α

2

∫
|∇V k|2 dx.

(iii) If (n∞, A∞, V∞) is the solution of the Schrödinger-Poisson system (2.15)–(2.17)
corresponding to N =

∫
n0 dx, then the following relative entropy Σk is the sum of

two nonnegative terms and decreases as k increases:

Σk = −
∫ (

nk (Ak − A∞) + nk − n∞
)
dx+

α

2

∫
|∇(V k − V ∞)|2.
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Proof. (i) Let us proceed by induction. Let nk be a given function, positive and
continuous on Ω. Inspired by [39, 40], we introduce the following functional, defined
for A ∈ H1(Ω) and V ∈ H1

0 (Ω):

J(A, V ) =
∆t

2

∫
nk |∇(A− V )|2 dx+

α

2

∫
|∇V |2 dx+ F [A] +

∫
nk (A− V ) dx,

where F [A] is defined by (2.11). This functional is continuous, Frchet differentiable,
and its derivative is given by

dA,V J · (δA, δV ) = ∆t

∫
nk ∇(A− V ) · ∇(δA− δV ) dx

+α

∫
∇V · ∇δV dx

−
∫
n[A] δA dx+

∫
nk (δA− δV ) dx,

where we have applied Lemma 2.3. Therefore it is readily seen that the critical
points of J satisfy (3.1)–(3.3), (3.4). To prove the existence and uniqueness of Ak+1

and V k+1, it suffices to show that J is strictly convex and coercive, since its unique
minimizer will be (Ak+1, V k+1). The strict convexity is a consequence of Lemma 2.3
(which states that F is strictly convex), of the strict convexity of the functional

V ∈ H1
0 (Ω) 7−→

∫
|∇V |2 dx

and of the convexity of the functional

(A, V ) ∈ H1(Ω) ×H1
0 (Ω) 7−→

∫
nk |∇(A− V )|2 dx.

It remains to prove the coercivity with respect to A ∈ H1(Ω) and V ∈ H1
0 (Ω).

Let (Aε, V ε) be a sequence in H1(Ω) × H1
0 (Ω), parametrized by ε > 0, such that

J(Aε, V ε) has an upper bound independent of ε. To prove the coercivity of J , it
suffices to show that ‖Aε‖H1 + ‖V ε‖H1 can be bounded independently of ε.

Setting aε = 1
|Ω|

∫
Aε dx (where |Ω| denotes the measure of Ω), we introduce the

function Bε = Aε − aε. We have

J(Aε, V ε) =
∆t

2

∫
nk |∇(Bε − V ε)|2 dx+

α

2

∫
|∇V ε|2 dx

+e−aε
∑

p

e−λp[Bε] +

∫
nk (Bε − V ε) dx+ aε

∫
nk dx ≤ C,

where C does not depend on ε. We recall that there exist two constants n > 0 and
n > 0, independent of ε, such that

n ≤ nk(x) ≤ n on Ω.
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Hence the Cauchy-Schwarz inequality gives

∆t

2
n

∫
|∇(Bε − V ε)|2 dx +

α

2

∫
|∇V ε|2 dx− n |Ω|1/2

(
‖Bε‖L2(Ω) + ‖V ε‖L2(Ω)

)

+e−aε
∑

p

e−λp[Bε] + aε

∫
nk dx ≤ J(Aε, V ε) ≤ C.

(3.6)

Besides, denoting by H̃1(Ω) the space of H1(Ω) functions which have a vanishing
integral on Ω, a classical compactness argument shows that, for any a1 > 0 and
a2 > 0, the norm

(B, V ) ∈ H̃1(Ω) ×H1
0 (Ω) 7−→

(
a1‖∇(B − V )‖2

L2(Ω) + a2‖∇V ‖2
L2(Ω)

)1/2

is equivalent on this space H̃1(Ω) × H1
0 (Ω) to the standard H1(Ω) × H1(Ω) norm.

Hence there exist two constants C0 > 0 and C1 > 0 independent of ε such that

∆t

2
n

∫
|∇(Bε − V ε)|2 dx +

α

2

∫
|∇V ε|2 dx− n |Ω|1/2

(
‖Bε‖L2(Ω) + ‖V ε‖L2(Ω)

)

≥ C0‖Bε‖2
H1(Ω) + C0‖V ε‖2

H1(Ω) − C1,

thus (3.6) gives

C0‖Bε‖2
H1(Ω) + C0‖V ε‖2

H1(Ω) + e−aε
∑

p

e−λp[Bε] + aε

∫
nk dx ≤ C. (3.7)

Let us now recall that the first eigenvalue of H[Bε] is defined by

λ1[B
ε] = min

φ ∈ H1(Ω)
‖φ‖L2(Ω) = 1

(
~

2

∫
|∇φ|2 dx +

∫
(Bε + V ext)φ2 dx

)
.

By choosing the test function φ(x) ≡ 1/
√
|Ω| in this formula, we deduce from∫

Bε dx = 0 that

λ1[B
ε] ≤ 1

|Ω|

∫
V ext dx.

There exists consequently a constant C2 > 0 independent of ε such that

e−aε
∑

p

e−λp[Bε] ≥ C2 e
−aε

and (3.7) implies

C0‖Bε‖2
H1(Ω) + C0‖V ε‖2

H1(Ω) + C2e
−aε

+ aε

∫
nk dx ≤ C.

12



Since
∫
nk dx > 0, it is clear then that ‖Bε‖H1(Ω), ‖V ε‖H1(Ω) and |aε| are bounded

independently of ε. Thus ‖Aε‖H1(Ω) is bounded, which completes the proof of coer-
civity.

As soon as (Ak+1, V k+1) is defined as the unique minimizer of J , we define nk+1

thanks to (2.6). The first part of Lemma 2.4 shows that nk+1 is continuous on
Ω. Hence, (3.1)–(3.3) and standard elliptic regularity estimates imply that V k+1 ∈
H2(Ω) and Ak+1 ∈ H2(Ω). The Sobolev embedding H2(Ω) ↪→ C(Ω) yields Ak+1 ∈
L∞(Ω), which implies, thanks to the second part of Lemma 2.4, that nk+1 > 0
on Ω. Consequently, Ak+2 and Φk+2 can be constructed and, by induction, all the
sequence (Ak,Φk)k≥1 (thanks to Assumption 2.1 which enables the first step of the
construction).

To complete the proof of (i), it remains to integrate (3.1) on Ω, which gives,
thanks to the boundary conditions (3.4):

∫
nk+1 dx =

∫
nk dx. (3.8)

This yields the charge conservation (3.5).

(ii) Let us adapt to the semi-discrete case the proof of Proposition 2.8. By using
Lemma 2.6, we have

∫ (
nk(Ak − Ak+1) + nk − nk+1

)
dx ≤ 0,

thus

−
∫

(nk+1Ak+1 − nk Ak + nk+1 − nk) dx = −
∫

(nk+1 − nk)Ak+1 dx

+

∫ (
nk(Ak − Ak+1) + nk − nk+1

)
dx

≤ −
∫

(nk+1 − nk)Ak+1 dx.

(3.9)
Besides, by using the Poisson equation (3.2), we obtain

α

2

∫ (
|∇V k+1|2 − |∇V k|2

)
dx =

1

2

∫
(nk+1 V k+1 − nk V k) dx

=
1

2

∫
(nk+1 − nk)V k+1 dx+

1

2

∫
nk(V k+1 − V k) dx

=
1

2

∫
(nk+1 − nk)V k+1 dx+

1

2

∫
V k(nk+1 − nk) dx.

By remarking that

0 ≤ α

∫
|∇(V k+1 − V k)|2dx =

∫
(nk+1 − nk)(V k+1 − V k),

13



we deduce that

1

2

∫
V k(nk+1 − nk) dx ≤ 1

2

∫
V k+1(nk+1 − nk) dx

and get
α

2

∫ (
|∇V k+1|2 − |∇V k|2

)
dx ≤

∫
V k+1(nk+1 − nk) dx.

By combining this inequality and (3.9), we obtain

Sk+1 − Sk ≤ −
∫

(nk+1 − nk)(Ak+1 − V k+1) dx

= ∆t

∫
(Ak+1 − V k+1) div

(
nk∇(Ak+1 − V k+1)

)
dx,

thanks to (3.1). An integration by parts, using (3.4), gives finally

Sk+1 − Sk ≤ −∆t

∫
nk |∇(Ak+1 − V k+1)|2 dx ≤ 0.

This proves (ii). Finally, to prove (iii), it suffices to remark as for Proposition 2.8
that

Σk+1 − Σk = Sk+1 − Sk ≤ 0.

4 The fully discretized system: construction and

analysis

We complete the construction of a numerical scheme for the QDD model (2.7)–(2.9)
by now discretizing the system (3.1)–(3.3) with respect to the space variable. In
the following section, we construct the scheme and give in Theorem 4.1 its main
properties: well-posedness, charge conservation, entropy dissipation and long-time
stability. These properties are proved in Sections 4.2, 4.3 and 4.4.

4.1 Notations and main results

For simplicity, the space dimension is now d = 1. The domain is Ω = (0, 1) and the
space gridstep is ∆x = 1/(N + 1). The grid is composed of the points xi = i∆x for
i = 0, · · · , N+1, where N ∈ N. In order to write the fully discretized finite difference
numerical scheme, let us introduce the followingN×N matrices of discrete derivative:

D− =
1

∆x




0 0 · · ·
−1 1 0 · · ·
0

. . .
. . . 0

... 0 −1 1


 , D+ =

1

∆x




−1 1 0 . . .
0 −1 1 · · ·
0

. . .
. . . 1

... · · · 0 0


 ,

14



D̃− =
1

∆x




1 0 · · ·
−1 1 0 · · ·
0

. . .
. . . 0

... 0 −1 1


 , D̃+ =

1

∆x




−1 1 0 . . .
0 −1 1 · · ·
0

. . .
. . . 1

... · · · 0 1


 ,

∆Dir =
1

∆x2




−2 1 0 . . .

1 −2
. . . 0

0
. . .

. . . 1
... · · · 1 −2



, ∆Neu =

1

∆x2




−1 1 0 . . .

1 −2
. . . 0

0
. . .

. . . 1
... · · · 1 −1



.

Remark that ∆Neu = D̃−D+ = D̃+D−. The unknowns are the following sequences
of vectors in R

N : nk = (nk
i )1≤i≤N , Ak = (Ak

i )1≤i≤N , V k = (V k
i )1≤i≤N and the scheme

is written:

nk+1 − nk

∆t
+

1

2
D̃−

(
nk D+(Ak+1 − V k+1)

)
+

1

2
D̃+

(
nk D−(Ak+1 − V k+1)

)
= 0, (4.1)

−α∆DirV
k = nk, (4.2)

nk =
∑

p

exp
(
−`p[Ak]

)
(Xp[A

k])2 (4.3)

for k ∈ N (here and in the sequel, for any (X, Y ) ∈ R
N ×R

N , XY denotes the direct
product (XiYi)1≤i≤N). In this discretized system, the definitions of `p[A] and Xp[A]
are the discrete analogue of those of λp[A], χp[A] for the continuous problem. These
quantities are the eigenvalues and the normalized eigenvectors of the discretized
Hamiltonian with Neumann boundary conditions:

M [A] = −~
2∆Neu + Diag(A+ V ext),

where Diag(A) denotes the diagonal matrix of coefficients (Ai)1≤i≤N and where the
components of the vector V ext are V ext

i = 1
∆x

∫ xi+1/2

xi−1/2
V ext(x) dx. Of course, the index

p of the eigenvalues and eigenvectors belongs now to {1, · · · , N}. Moreover, the
eigenvectors are normalized with respect to the euclidean norm ‖ · ‖N associated to
the scalar product on R

N :

(U, V )N = ∆x

N∑

i=1

Ui Vi .

Remark that the boundary conditions are already taken into account in this
scheme, the values of the unknowns for i = 0 or i = N + 1 being implicitely defined.
To complete (4.1)–(4.3), it suffices to add an initial condition. If a Cauchy data for
the continuous problem n0 is given, the vector n0 ∈ R

N is chosen as follows:

n0
i =

1

∆x

∫ xi+1/2

xi−1/2

n0(x) dx for i = 1, · · · , N. (4.4)
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The numerical scheme (4.1)–(4.3) is clearly consistent with the QDD system
(2.7)–(2.10). Its properties are listed in the following Theorem, whose proof is de-
veloped in the three next subsections:

Theorem 4.1 If Assumptions 2.1 and 2.2 are satisfied, the numerical scheme (4.1)–
(4.4) is consistent with (2.7)–(2.10) and has the following properties:
(i) (well-posedness) For all k ∈ N, its numerical solution (nk, Ak, V k) is uniquely
defined. Moreover, for all k ∈ N, (Ak+1, V k+1) is the unique minimizer of the strictly
convex and coercive functional

Ĵ(A, V ) =
∆t∆x

4

N∑

i=1

nk
i (D+(A− V ))2

i +
∆t∆x

4

N∑

i=1

nk
i (D−(A− V ))2

i

+
α∆x

2

N∑

i=1

(D+V )2
i +

α

2 ∆x
(V1)

2 +
α

2 ∆x
(VN)2

+

N∑

p=1

exp (−`p[A]) + ∆x

N∑

i=1

nk
i (Ai − Vi) .

(4.5)

(ii) (charge conservation) For all k and for all i we have nk
i > 0 and the (discrete)

total charge is conserved:

∀k ∈ N ∆x
N∑

i=1

nk
i = ∆x

N∑

i=1

n0
i . (4.6)

(iii) (entropy dissipation) The sequence of (discrete) free energies defined by

Sk = −∆x

N∑

i=1

nk
i (Ak

i + 1) +
α∆x

2

N∑

i=1

(D+V k)2
i +

α

2 ∆x
(V k

1 )2 +
α

2 ∆x
(V k

N)2 (4.7)

is decreasing and belongs to `∞. Moreover there exists a constant C > 0 (depending
only on Ω and ~) such that, for any K ∈ N, we have

−C ≤ SK+
∆t∆x

2

K∑

k=1

N∑

i=1

nk−1
i (D+(Ak − V k))2

i

+
∆t∆x

2

K∑

k=1

N∑

i=1

nk−1
i (D−(Ak − V k))2

i ≤ S0.

(4.8)

(iv) (long-time behavior) The numerical solution of (4.1)–(4.3), (4.4) converges, as
k tends to +∞, to the unique solution of the discrete Schrödinger-Poisson system:

∀i ∈ {1, · · · , N} Ai = Vi − εF , εF ∈ R, (4.9)

{ −~
2∆NeuXp + (V + V ext)Xp = `pXp (p = 1, · · · , N)

∀(p, q) (Xp, Xq)N = δpq ,
(4.10)
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−α∆DirV = n =
∑

p

eεF−`p (Xp)
2, (4.11)

∆x

N∑

i=1

n = ∆x

N∑

i=1

n0. (4.12)

4.2 Proof of well-posedness and entropy dissipation

For the sake of conciseness, we shall not develop the proofs of the first three items,
(i), (ii) and (iii) of Theorem 4.1. Indeed, it suffices to adapt to the discrete case the
proof of Theorem 3.1. These results are based on formulas of discrete integration
by parts and on technical results concerning matrix analysis which are the discrete
equivalents of the technical results stated in Section 2.2, and that we have listed in
Lemma 4.2 below.

It is worthwhile to precise that the similarity between the functional J(A, V ),

introduced in the proof of Theorem 3.1, and the functional Ĵ(A, V ) of this Theorem
4.1 is due to two useful formulas of discrete integration by parts: for any pair of
vectors (U, V ) ∈ R

N × R
N , we have

− (∆NeuU, V )N = −
(
D̃−D+U, V

)
N

=
(
D+U,D+V

)
N

= −
(
D̃+D−U, V

)
N

=
(
D−U,D−V

)
N

(4.13)

and

− (∆DirU, V )N = (D+U,D+V )N +
U1V1 + UNVN

∆x
. (4.14)

Next, we gather in the following lemma some classical but useful technical results on
matrices:

Lemma 4.2 Let A ∈ R
N . Then the eigenvalues `p[A] of the matrix M [A] =

−~
2∆Neu + Diag(A + V ext) are simple. (Up to a multiplication by -1), its first

eigenvector X1[A] has positive components. The derivatives of the eigenvalues and
eigenvectors of M [A] with respect to A, in the direction δA, are given by

d`p[A] · δA = (δAXp[A], Xp[A])N ,

dXp[A] · δA =
∑

q 6=p

1

`p[A] − `q[A]
(δAXp[A], Xq[A])N Xq[A].

Proof. The simplicity of the eigenvalues of M [A] is a general classical result for
Hessenberg matrices [49], i.e matrices M = (mi,j)1≤i,j≤N such that

mi,j = 0 for j < i− 1 and mi,i−1 6= 0 for 2 ≤ i ≤ N.

This simplicity enables to differentiate `p and Xp[A] by using classical perturbation
theory.
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Let λ = 1 + maxi |Ai|. Then it is clear that the matrix M [A] + λI is invertible
and satisfies the discrete maximum principle:

∀Y ∈ R
N\{0} Y ≥ 0 =⇒ (M [A] + λI)−1 Y > 0,

where, for any vector X ∈ R
N , the notation X ≥ 0 (resp. X > 0) stands for Xi ≥ 0

(resp. Xi > 0), for all i = 1, · · · , N . Hence Perron-Frobenius theorem (see [49])
applies to the matrix (M [A] + λI)−1: the spectral radius of this matrix is an eigen-
value and, up to a multiplication by −1, the corresponding eigenvector has positive
components. This vector is the ground state X1[A] of M [A].

Remark 4.3 A special care has to be taken for the initial step of the scheme. In
the semi-discrete case of system (3.1)–(3.3), the question of the initial step was left
unsolved: for a given initial density n0(x), can we define a unique corresponding
chemical potential A0 such that (3.3) holds ? In the fully discrete case, this question
finds a positive answer, as stated in Theorem 4.1, (i). Section 4.3 is devoted to this
particular point of the theorem.

4.3 Initialization of the chemical potential

As noted above in Remark 4.3, one question has not been addressed yet concerning
the numerical scheme (4.1)–(4.4): the computation of the initial chemical potential
A0 corresponding to the initial data n0. While, in the continuous problem, we do not
know whether (or in which functional framework) the non local relation (2.6) linking
n to A is invertible, this operation is possible with its discrete analogous (4.3). The
aim of this section is to establish this property: we show that this problem is again
equivalent to a convex minimization problem. Remark that this enables to deduce
a practical method to solve numerically this problem, by writing an algorithm for
this optimization problem (see [20] for details). Note also that the possibility of
inverting the constitutive relation A 7→ n[A], interesting for itself, is not mandatory
for the other steps of the scheme (see Theorem 4.1 (i)): the minimization of J for the
computation of (Ak+1, V k+1) does not require the knowledge of Ak. The following
Proposition is the main result of this subsection:

Proposition 4.4 Let n ∈ (R∗
+)N . Then there exists a unique A ∈ R

N such that

n =
N∑

p=1

exp (−`p[A]) (Xp[A])2, (4.15)

where `p[A] and Xp[A] are the eigenvalues and the eigenvectors of the discrete Hamil-
tonian M [A] = −~

2∆Neu + Diag(A+ V ext).

Proof. Consider the functional

Φ(A) =
∑

p

exp (−`p[A]) + (n,A)N . (4.16)
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Straightforward calculations using Lemma 4.2 lead to the expression of its first and
second derivatives:

dΦA · δA =

(
n−

∑

p

exp(−`p[A]) (Xp[A])2, δA

)

N

and

d2ΦA · δA · δA =

N∑

p=1

exp(−`p[A]) (δAXp[A] , Xp[A])2
N

−
∑

p

∑

q 6=p

exp(−`p[A]) − exp(−`q[A])

`p[A] − `q[A]
(δAXp[A] , Xq[A])2

N .

It is clear then that this functional Φ is strictly convex and that its unique minimizer
satisfies (4.15). To prove the existence of a solution to the problem, the major task
is to prove the coercivity of this functional.

Recall that

`1[A] = min
‖φ‖N =1

(
(−~

2∆Neuφ, φ)N + (Diag(A+ V ext)φ, φ)N

)
. (4.17)

Let i0 ∈ {1, · · · , N}. By choosing the i0-th normalized basis vector as φ in (4.17)
(i.e. φi = δi,i0/

√
∆x), we obtain

`1[A] ≤ Ai0 +
2~

2

∆x2
+ V ext

i0
. (4.18)

Hence, there exists a constant C > 0 depending only on ∆x, ~ and V ext such that

Φ[A] ≥ C
∑

i

exp (−Ai) + ∆x
∑

i

niAi . (4.19)

Since for all i we have ni > 0, it is clear that

lim
‖A‖→∞

Φ[A] = +∞.

This proves the coercivity of Φ.
Remark that, since A realizes the minimum of Φ, we have in particular the

following inequality, which will be used later on:

Φ[A] ≤ Φ[−V ext] ≤
∑

p

exp
(
−`∆p

)
≤ C, (4.20)

where (`∆p )p=1,···,N denote the eigenvalues of −~
2∆Neu and C is independent of ∆x.
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4.4 Proof of long-time behavior

This subsection is devoted to the proof of Item (iv) of Theorem 4.1. The study of
the long-time behavior of the model is an interesting issue which is addressed here
in the fully discrete case (Theorem 4.1) but was not solved in the semi-discrete case
(Theorem 3.1). As will be seen later on, it is possible here to control the density
from below, while this crucial question is still open for the continuous QDD problem
(2.7)–(2.9) or the semi-discrete QDD problem (3.1)–(3.3).

From the positivity of the nk
i ’s and from (4.6), it is first deduced that, for any i,

the sequence (nk
i )k∈N is bounded :

∀k, ∀i 0 < nk
i ≤ C0. (4.21)

In this proof, Cj (j = 0, · · · , 9) denote positive constants independent of i and k and
which only depend on ∆x. After extraction of a subsequence, we get

∀i ∈ {1, · · · , N} nk
i −→ n∞

i as k → +∞.

Step 1: finding a bound from below for the density. The crucial step in this proof
consists in proving that for all i we have n∞

i > 0. Let us introduce the set

I = {i ∈ {1, · · · , N} : n∞
i > 0} .

By passing to the limit in (4.6), we deduce that
∑

i n
∞
i =

∑
i n

0
i > 0, thus I 6= ∅.

In the proof of Proposition 4.4, we have obtained the estimate (4.19), which,
together with (4.20), implies

C1

∑

i

exp
(
−Ak

i

)
+ ∆x

∑

i

nk
i A

k
i ≤ C2.

From this inequality, two facts are deduced. Firstly, thanks to (4.21), we obtain the
lower bound

∀k, ∀i Ak
i ≥ −C3.

Secondly, the inequality

nk
i A

k
i ≤ C2 + C0C3

∆x

provides an upper bound for the sequence (Ak
i )k∈N for each i ∈ I.

In this proof, we denote `kp = `p[A
k] and Xk

p = Xp[A
k]. Recall that I 6= ∅. In

other terms, we have n∞
i0 > 0 for a certain i0. Consequently, Ak

i0 is bounded from
above independently of k and, by (4.18), there exists a constant C4 such that

`k1 ≤ C4. (4.22)

Furthermore, (4.1)–(4.3) yields

∀i exp
(
−`k1

)
(Xk

1,i)
2 ≤ nk

i . (4.23)
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Since the vector Xk
1 is normalized, we have

N∆xmax
i

(Xk
1,i)

2 ≥ ‖Xk
1 ‖2

N = 1,

thus, from (4.21) and (4.23), we deduce

exp
(
−`k1

)
≤ C0

maxi(X
k
1,i)

2
≤ C0N∆x ≤ C0,

which gives
`k1 ≥ −C5. (4.24)

Next, from (4.22) and (4.23), we deduce that there exists a constant C such that

∀i 0 < Xk
1,i ≤ C

√
nk

i (4.25)

(the first eigenvector Xk
1 is implicitly chosen with positive components). Besides,

since this vector Xk
1 is normalized, it converges as k → ∞ (up to another extraction

of subsequence) to a normalized vector X∞ :

∀i ∈ {1, · · · , N} Xk
1,i −→ X∞

i ≥ 0 as k → +∞.

Thanks to (4.25), we get

∀i ∈ {1, · · · , N}\I, X∞
i = 0.

Let us show that I = {1, · · · , N} by using a contradiction argument. We assume
that there exists i0 ∈ {1, · · · , N}\I. Since we know that X∞ 6= 0, one can choose in
fact i0 such that X∞

i0+1 > 0 or X∞
i0−1 > 0. For instance and with no loss of generality,

assume that X∞
i0+1 > 0, which gives n∞

i0+1 > 0 with (4.25) (due to the symmetric
form of the finite difference scheme (4.1), a similar argument can be used in the case
X∞

i0−1 > 0). We deduce from

M [Ak]Xk
1 = `k1 X

k
1

the identity

(
2~

2

∆x2
+ Ak

i0 + V ext
i0 − `k1

)
Xk

1,i0 =
~

2

∆x2

(
Xk

1,i0+1 +Xk
1,i0−1

)

(actually, this equality holds only if i0 > 1; if i0 = 1 the term 2~
2 in the left-hand

side has to be replaced by ~
2, which does not affect the rest of the proof). Thus, for

k large enough, we deduce from (4.24) that

(
Ak

i0
+

2~
2

∆x2
+ V ext

i0
+ C5

)
X1,i0 [A

k] ≥ ~
2

2∆x2
X∞

i0+1 > 0.
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Since Xk
1,i0 converges to 0 as k goes to +∞, this yields

Ak
i0
−→ +∞ as k → +∞.

The contradiction will now come from the entropy estimate (4.8). Indeed, one can
deduce from this inequality that

∀k, ∀i |V k
i | ≤ C6 (4.26)

and
∆t nk−1

i0+1

(
Ak

i0+1 − Ak
i0
− V k

i0+1 − V k
i0

)2 ≤ C7.

This leads to a contradiction, since we have seen that, as k → +∞,

nk
i0+1 → n∞

i0+1 > 0, |Ak
i0+1| + |V k

i0+1| + |V k
i0
| ≤ C8 and Ak

i0
→ +∞.

Consequently, we have I = {1, · · · , N} and, for all i, we have n∞
i > 0.

Step 2: passing to the limit. Due to the fact that n∞
i > 0, for all i, we deduce the

bound
∀k, ∀i |Ak

i | ≤ C9

and, thanks to the bound (4.26), one can extract another subsequence such that

∀i ∈ {1, · · · , N} Ak
i −→ A∞

i and V k
i −→ V ∞

i as k → +∞.

By using again the entropy estimate (4.8), we obtain

∆t

2∆x

∞∑

k=1

N−1∑

i=1

nk−1
i

(
Ak

i+1 − V k
i+1 − Ak

i + V k
i

)2 ≤ C,

which implies that A∞
i − V ∞

i does not depend on i. Denoting by −εF this constant,
one can pass to the limit in (4.1)–(4.3) and obtain a solution of (4.9)–(4.12). To
conclude that all the sequence converges (and not only a subsequence), it remains
to prove the uniqueness of the solution for this discrete Schrödinger-Poisson system.
This can be done by following the approach developed in [39]. Indeed, it is possible
to show that the following functional is strictly convex and that its unique minimizer
solves (4.9)–(4.12):

J̃(εF , V ) =
α∆x

2

N∑

i=1

(D+V )2
i +

α

2 ∆x
(V1)

2 +
α

2 ∆x
(VN)2

+
N∑

p=1

exp (εF − `p[V ]) − εF ∆x
N∑

i=1

n0
i .
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5 Numerical results

In order to simulate the quantum drift-diffusion model, the numerical scheme (4.1)–

(4.3) has been implemented by minimizing the functional Ĵ defined by (4.5). Each
strictly convex unconstrained minimization problem is solved by a Newton method
(note that the Hessian matrix is explicit and always positive definite). The compu-
tation of the eigenelements of the discrete Hamiltonian M [A] is performed by using
the matlab function eigs [36]. For details concerning the practical implementation
of the scheme, one can refer to [20].

The external potential is a discontinuous function playing the role of a double
barrier structure potential and the initial density n0 is concentrated on the left of the
double barrier (see Figure 1). The initial step involves the inversion of the formula
(4.15), i.e. the computation of the initial chemical potential A0 corresponding to n0.
The calculation of A0 is done by minimizing the strictly convex functional Φ defined
in (4.16). Recall that A0 is not used in the sequel of the algorithm.

On Figures 1, 2, 3, 4 and 5, we have represented, as functions of x, the density
n, the total potential V + V ext and the electrochemical potential A − V at the
initial step and at different time steps: k = 3, 20, 100, 500. The parameters of these
computations are the following ones:

∆x ∆t ~
2 α

0.01 0.005 0.02 0.1

On the right side of these figures, one can check that the electrochemical potential
converges to a constant: at time t = 500∆t, one can consider that the system
has converged to a steady state. On Figure 6, we show the evolution of the free
energy Sk defined by (4.7) and check that it is a decreasing function, converging to a
constant. In these simulations, the initial total charge is equal to 1 and this quantity
is conserved during the evolution, up to a relative error of 10−4 %.

6 Conclusion

We have introduced a semi-discrete (in time) version (3.1)–(3.3) of the quantum
drift-diffusion model (2.7)–(2.9). We have proved that this system is well-posed and
that its resolution amounts to minimizing a convex functional. Moreover, this semi-
discrete model has the following interesting properties: it preserves the total charge
and the positivity of the density and it dissipates the free energy. Then we have
defined the numerical scheme (4.1)–(4.3) by discretizing the space variable in this
system. As a consequence, this scheme possesses the same properties as the semi-
discrete model. We have also studied the long-time behavior of the discrete solution:
it converges to the solution of a discrete Schrödinger-Poisson system. Finally, we
have given some results of numerical simulations which have been performed with
this scheme.

A lot of open questions arise naturally. Let us list a few of them. By passing
formally to the limit in the semi-discrete model as ∆t goes to zero, one obtains a

23



D
en

si
ty

a
n
d

to
ta

l
p
o
te

n
ti
a
l

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

 k=0 

E
le

ct
ro

ch
em

ic
a
l
p
o
te

n
ti
a
l

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

8  k=0 

Position Position

Figure 1: Numerical solution of the QDD model: initial step. Left: the density n(x)
(solid line) and the total potential (V + V ext)(x)(dashed line) as functions of the
position x. Right: the electrochemical potential (A− V )(x).
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Figure 2: Numerical solution of the QDD model, after 3 iterations. The same quan-
tities as on Fig. 1 are represented.
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Figure 3: Numerical solution of the QDD model, after 20 iterations. The same
quantities as on Fig. 1 are represented.
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Figure 4: Numerical solution of the QDD model, after 100 iterations. The same
quantities as on Fig. 1 are represented.
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Figure 5: Numerical solution of the QDD model, after 500 iterations. The same
quantities as on Fig. 1 are represented.
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Figure 6: Free energy Sk as a function of the time step k
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solution of the initial QDD model. To make this statement rigourous, one of the
most difficult points to be solved seems to find a bound from below for the density
(this was possible with the fully discrete case as seen in Subsection 4.4). Studying
the long-time behavior of the semi-discrete model or the continuous model is also an
interesting challenge: do their solutions converge to the solution of the Schrödinger-
Poisson system studied in [39, 40] ? Another important question is concerned with
boundary conditions. We have chosen no-flux boundary conditions, but for pratical
use it is necessary to enable a current flow through the boundary. This issue will be
investigated in a future work.
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