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Abstract

We show that Quantum Energy-Transport and Quantum Drift-Diffusion

models can be derived through diffusion limits of a collisional Wigner equation.

The collision operator relaxes to an equilibrium defined through the entropy

minimization principle. Both models are shown to be entropic and exhibit

fluxes which are related with the state variables through spatially non-local

relations. Thanks to an ~ expansion of these models, ~2 perturbations of the

Classical Energy-Transport and Drift-Diffusion models are found. In the Drift-

Diffusion case, the quantum correction is the Bohm potential and the model is

still entropic. In the Energy-Transport case however, the quantum correction

is a rather complex expression and the model cannot be proven entropic.

1 Introduction

Classical Drift-Diffusion and Energy-Transport models have been invaluable tools for
many years in various areas of physics and engineering. They describe the transport
of charged-species in strong interaction with a surrounding medium. Such situations
occur e.g. in semiconductors (where electrons and holes are interacting with the
crystal impurities and the phonons) or in cold plasmas or gas discharges (where the
electrons and the ions are interacting with the surrounding neutral molecules).

Drift-Diffusion models have been used since the early days of scientific compu-
tation (see e.g. [57], [69], etc. for semiconductors and [30], [67], etc. for plasmas
and gas discharges). They consist of a mass balance equation for the density of
the conductive species, supplemented with a constitutive equation for the mass flux
describing the combined effects of convection under the field and diffusion.

The Drift-Diffusion model assumes that the temperature of the mobile species
coincides with that of the surrounding medium. This is sometimes too restrictive.
The Energy-Transport model involves the temperature of the mobile species as a
variable of the problem in addition to the density. The temperature evolves according
to an energy balance equation where the energy fluxes are defined by a similar
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constitutive relation as the mass flux. One can find an account of the recent theory
of the Energy-Transport model in [49] in the context of semiconductors.

Classical Drift-Diffusion and Energy-Transport models can be derived from mi-
croscopic transport models such as the Boltzmann equation. The passage from the
Boltzmann equation to these models, the so-called ’diffusion approximation’, heavily
relies on the description of the interactions between the mobile species and the sur-
rounding medium at the kinetic level by means of the collision operator. To carry the
diffusion approximation through, the collision operator must satisfy a certain number
of properties, like e.g. space and time locality, the existence of collisional invariants
(conserved quantities during a collision) and equilibrium states (the Maxwellians),
entropy decay and invertibility in the orthogonal direction to the equilibria.

Currently, the microelectronics industry produces highly miniaturized devices
with very small characteristic length scales. In such devices, quantum effects become
important and even, sometimes, predominant. A lot of works are devoted to the
numerical simulations of quantum transport models in semiconductors (see e.g. [34],
[50], [59], [33], [24]). Yet, most of these authors do not attempt to adapt Drift-
Diffusion and Energy-Transport theories but rather, start from different models. It
would seem more efficient to use some adaptation of the former since the existing
classical codes could be used as starting bases.

However, this approach is seldom used (see however a quantum version of the
Drift-Diffusion model in [2], [3]), because it is extremely difficult to perform the
derivation of Drift-Diffusion models from the kinetic level in a quantum setting.
Indeed, this would require a quantum theory of collisions. Such a theory is still at
a rather early stage (see e.g. [4], [21], [31], [54], [66] and more recently [6], [7], [35])
and provides collision operators which do not have the properties required in the
diffusion approximation process.

The present work is an attempt to partly fill this gap, at least on the formal level.
It uses an earlier work [27], [28] where quantum equilibria (or quantum Maxwellians)
are defined as minimizers of the quantum entropy, subject to local constraints of,
say, given mass and energy. By local constraints, we mean that we enforce, not only
that the total number of particles and the total energy of the system is fixed, like in
usual quantum statistical mechanics approaches [8], but that the local density and
energy at any given point x are given functions. The result of this constrained
minimization problem is that the ’quantum Maxwellians’ depend non-locally on the
thermodynamic variables (i.e. the Lagrange multipliers of the constraints).

Thanks to the definition of these quantum equilibria, it was possible in [29] to
generalize the expression of the collision operators of classical kinetic theory to quan-
tum ones. These operators display the same properties as the classical ones, but for
the fact that the equilibria are quantum ones and that they decrease the quantum
entropy. In the present work, we introduce simpler operators, of relaxation type
(also called ’BGK’ operators in the classical framework) which allow more explicit
computations than the operators of [29]. One of the tasks we shall fulfill is to prove
that these operators have the necessary properties for the diffusion approximation to
work. The rationale for the use of these simplified operators stems from the analogy
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with the classical case, where they have been proved to be in a reasonable sense a
valuable alternative to the much more complex Boltzmann operator [22].

After the definition of these quantum BGK operator, we follow the standard route
defined by the diffusion approximation methodology. Since macroscopic models of
Drift-Diffusion or Energy-Transport types are expected to be valid at large scales,
we perform a diffusion scaling of the quantum kinetic equation (or Wigner equation).
The Quantum Drift-Diffusion and Quantum Energy-Transport models appear at the
leading order when we let the scale ratio (often called the Knudsen number in gas
dynamics) tend to zero. They differ from their classical counterpart in that the
dependence of the (mass and energy) fluxes upon the density and temperature is
non-local in space. This is the signature of the non-local dependence of the quantum
Maxwellian upon its thermodynamic parameters. An important property is that the
entropy decays along any solution of these models. Of course, this property originates
from the definition of the quantum Maxwellians through the entropy minimization
principle.

In an attempt to find more explicit flux expressions, we study their expansion in
powers of the parameter ~ (this parameter should be viewed as a scaled dimensionless
version of the Planck constant ~). Of course, at leading order when ~ → 0, we recover
the classical models. More interesting is the first order correction, of order ~2.

In the case of the Drift-Diffusion model, this correction is shown to involve the so-
called Bohm potential, which occurs in many quantum hydrodynamics [42], [41], [46]
and quantum drift-diffusion [2], [3] theories. Consequently, this paper gives a way to
derive this Quantum Drift-Diffusion model from first principles. We can also show
that the Classical Drift-Diffusion model corrected with the Bohm potential remains
entropic. To our knowledge, the proof of this property is new. Other mathematical
properties and numerical simulations of this model can be found in [18], [64], [65].

In the case of the Energy-Transport model however, the correction to the classical
model seems too complex for practical purposes and additionally, we were unsuccess-
ful in trying to prove the entropy property. In the case where we can neglect the
temperature gradients compared with the density gradients, the model simplifies
slightly.

We conclude this introduction by a few other bibliographical notes. The first
macroscopic quantum models that have been derived were of hydrodynamic nature
(the difference between hydrodynamic like and diffusion like models will be summa-
rized in section 5.1). The reader will find in [42], [41], [46], [43], [32], [38], [39], [40] a
sample of recent works on quantum hydrodynamic models. The entropy minimiza-
tion principle which is the core of the present work has previously been used to derive
quantum hydrodynamic models in [27] and [28]. A different, but related approach,
can be found in [55], [58], [71]. All these approaches rely on methods which, in the
classical setting, have been developped in [53], [60].

The diffusion approximation procedure has first been developped in the context
of neutron transport (see e.g. [51], [19], [11]) and radiative transfer [9], [10]. Its
first application to semiconductors and the rigorous derivation of the Classical Drift-
Diffusion model is found in [63], [44]. The Classical Energy-Transport model appears
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in the early work [70]. Its first derivation from the semiconductor Boltzmann equa-
tion is due to [15] and [13] (see also the [23]). It has been analyzed in [25], [26].

The outline of the paper is as follows. In section 2, we present the starting point of
our analysis: the Wigner-BGK model. Then, in section 3, the diffusion limit leading
to the Quantum Energy-Transport model is performed. Section 4 summarizes the
same programme for the Quantum Drift-Diffusion model. In section 5, expansions
of the so-obtained models in powers of ~ are developped. A conclusion is drawn in
section 6 and an appendix collects some useful technical formulae.

Future developments of this work will involve both theoretical investigations
(proof of well-posedness, stability, etc.), and numerical ones (simulation of a resonant
tunneling diode, for instance). Among the questions which remains to be solved are
the establishment of correct boundary conditions for the Quantum Energy-Transport
and Quantum Drift-Diffusion models. This implies setting up an entropy minimiza-
tion problem on a bounded domain with boundary conditions. This question is under
investigation in a future work [36], [37]. In particular, the treatment of open bound-
ary conditions for the Schrödinger equation has been investigated in [52], [5], [16],
[12], [14], [17], [62]. Its adaptation to the present framework is in progress.

2 The Wigner-BGK model

A quantum particle system can be described by its density operator ρ, which is a
positive, hermitian, trace-class operator on a Hilbert space X . If the system consists
of a single particle in Rd (d = 1, 2, 3 in practice), subject to a given external potential
V (x, t), we have X = L2(Rd), the space of square integrable functions on Rd. In this
case, the density operator satisfies the quantum Liouville equation

i~∂tρ = [H, ρ] , (2.1)

where H is the particle Hamiltonian

H = −~2

2
∆ + V , (2.2)

and [H, ρ] = Hρ − ρH is the commutator of H and ρ. In all this work, we assume
that the particle mass is constant and equal to unity.

We shall be concerned with many-particle systems. Our initial postulate is that
the system can be modeled by a single-particle density operator ρ satisfying a mod-
ified Liouville equation

i~∂tρ = [H, ρ] + i~Q(ρ) , (2.3)

where the potential V in the Hamiltonian H can be either an external potential or
a mean-field like potential and Q(ρ) is a collision operator describing the mutual
interactions between the particles themselves or between the particles and the sur-
rounding environment. In this sense, (2.3) is an equivalent of the classical Vlasov-
Poisson-Boltzmann equation which describes semi-classical charged-particle trans-
port in plasmas or semiconductors for instance.
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We shall not dwell on what precise form the potential V should take because the
forthcoming developments will be independent of it. On the other hand, the precise
form of the collision operator matters. In this paper, we shall use our previous works
[27] (see also [28]) and [29]. In [27], we propose to define quantum local equilibria
(or quantum Maxwellians) as minimizers of the quantum entropy functional, subject
to given local moment constraints (such as local density, momentum and energy).
As opposed to global equilibria, whose definitions are standard (see e.g. [8]), these
quantum Maxwellians depend on the position variable x through their (non-local)
relation to the given moment constraints. In [29], we use these quantum Maxwellians
to extend the expression of the classical Boltzmann collision operator to the quantum
case.

In this paper, we shall consider a simpler collision operator of BGK type. Clas-
sical BGK operators provide a simple relaxation model with similar features as the
Boltzmann operator (e.g. local conservation of mass, momentum and energy, entropy
decay, etc). In the present paper, we shall provide an extension of the BGK operator
to quantum systems. For the purpose of our present developments, we shall restrict
to imposing mass and energy conservation.

It is convenient to introduce the Wigner transform of the density matrix ρ. The
Wigner transform maps operators on L2(Rd) to symbols, i.e. functions of the classical
position and momentum variables (x, p) ∈ R2d. More precisely, let us define the
integral kernel of the operator ρ to be the distribution ρ(x, x′) such that ρ operates
on any function ψ(x) ∈ L2(Rd) as follows:

ρψ(x) =

∫
ρ(x, x′)ψ(x′) dx′ .

The kernel ρ(x, x′) can always be defined in the distributional sense. Then, the
Wigner transform W [ρ](x, p) is defined by:

W [ρ](x, p) =

∫

Rd

ρ

(
x− 1

2
η, x+

1

2
η

)
eiη·p/~ dη .

We shall denote by h(x, p) = W [H] the Wigner transform of the Hamiltonian (2.2),
i.e.

h(x, p) =
|p|2
2

+ V (x, t) , (2.4)

which is nothing but the classical Hamiltonian.
The Wigner transform is an isometry between the operator space L2 = {ρ |

Tr {ρρ†} < ∞}, (where Tr is the operator trace and ρ† is the hermitian adjoint of
ρ), and the space L2(R2d). Indeed, as an easy consequence of Plancherel’s identity,
we have, for two operators ρ and σ in L2:

Tr {ρσ†} =

∫
W [ρ]W [σ]

dx dp

(2π~)d
, (2.5)

where the bar means complex conjugation. Therefore, the Wigner transform can be
inverted and its inverse, also referred to as the Weyl quantization, is defined for any
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function f(x, p) as the operator acting on ψ(x) ∈ L2(Rd) as:

W−1[f ]ψ(x) = (2π~)−d

∫

R2d

f

(
x+ y

2
, p

)
ψ(y) eip·(x−y)/~ dp dy . (2.6)

The Wigner transform f(x, p) of the density matrix ρ can be viewed as a quantum
extension of the classical phase-space Boltzmann distribution function. Note that
however f(x, p) is not a positive function, despite the fact that ρ is a positive operator
(although f is a real number since ρ is a hermitian operator). Taking the Wigner
transform of the collisional Liouville equation (2.3), we find the collisional Wigner
equation:

∂tf + p · ∇xf − Θ[V ]f = Q(f). (2.7)

where Θ[V ] is the operator

Θ[V ]f =
i

(2π)d

∫

R2d

V (t, x+ ~

2
η) − V (t, x− ~

2
η)

~
f(x, p′) ei(p−p′)·η dη dp′ , (2.8)

and Q(f) is the Wigner transform of the collision operator Q(ρ). In the semi-classical
limit ~ → 0, Θ[V ]f converges to the usual operator ∇xV · ∇pf . Now our next task
is to specify Q(f).

We define the local moments of ρ (such as the local mass, momentum and energy)
like in the classical case as the moments of f . Therefore, the local density n = n(x),
mean velocity u(x, t) and energy W = W(x) are defined by




n(x)
nu(x)
2W(x)


 =

∫
f(x, p)




1
p
|p|2


 dp

(2π~)d
. (2.9)

In this introduction, we omit the possible dependence upon time. Note that n
is rather the density normalized by the total number of particles since

∫
n dx =

Tr ρ = 1.
The quantum entropy is defined globally for the entire system as

H [ρ] = Tr {ρ(ln ρ− 1)} , (2.10)

where ln ρ is the operator logarithm of ρ (i.e. if ρ has eigenvalues ρs, then ln ρ has
eigenvalues ln ρs in the same basis). Note that, contrary to the classical case, the
quantum entropy is defined globally (i.e. is integrated over the space variable). In [27]
and [28], we introduced the concept of local equilibrium (or quantum Maxwellian)
as a minimizer of the following constrained problem: (n(x),W(x)) being given, find
the minimum of the quantum entropy subject to the constraint that the local density
and energy are given by n and W, i.e. find

min

{
H [ρ] |

∫
W [ρ](x, p)

(
1
|p|2

)
dp

(2π~)d
=

(
n(x)
2W(x)

)
∀x ∈ Rd

}
.

(2.11)
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In [28], it is (formally) shown that this minimization problem has a solution given
by

ρa,c = exp(W−1(a(x) + c(x)|p|2)) , (2.12)

where (a(x), c(x)) are such that

∫
W [ρa,c](x, p)

(
1
|p|2

)
dp

(2π~)d
=

(
n(x)
2W(x)

)
∀x ∈ Rd .

In (2.12), exp refers to the operator exponential, defined in a similar way as the
operator logarithm. In the forthcoming developments, we shall write

fa,c = W [ρa,c](x, p) = Exp (a(x) + c(x)|p|2) , (2.13)

where the ’quantum exponential’ Exp is defined, for any symbol f(x, p) by:

Exp f = W [exp(W−1(f))] .

Note that, in (2.13), the functions a and c are to be sought in a class of functions
in which the exponential is defined and is a trace-class operator. Determining which
classes of functions answer this question is a difficult and still open problem. However,
a first step in this direction has been made in [36], [37] for a discretized version of
the problem. In a similar way, we define the ’quantum logarithm’ Ln by

Ln f = W [ln (W−1(f))] .

We note that, in view of (2.5) and (2.10), we can write:

H [ρ] =

∫
f(Ln f − 1)

dx dp

(2π~)d
,

where f = W [ρ].
Now, for given f(x, p), we define Mf as the quantum Maxwellian which has the

same moments as f , i.e.

Mf = Exp (a+ c|p|2) such that
∫

(Mf − f)

(
1
|p|2

)
dp = 0 .

Throughout this paper, we shall suppose that the two integral constraints fix the two
functions a and c in a unique way. Proving this fact is a mathematically challenging
problem. However, it can be proved for the discrete case (see [36], [37]) and the
extension of the proof to the continuous setting in under investigation.

The uniqueness of a and c implies that MMf
= Mf , i.e. the mapping f → Mf

is a (nonlinear) projector. Then, we define the collision operator as

Q(f) = Mf − f . (2.14)
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This collision operator models the interaction of the particle system with a back-
ground. The interaction leaves the local number and energy of the particles un-
changed and relaxes the distribution towards the quantum Maxwellian Mf . In clas-
sical semiconductor kinetic theory, such operators model the combination of electron-
phonon scattering (in its elastic limit) and electron-electron scattering (see e.g. [23],
[15], [13] for a discussion of this point).

Before going further, we can note the following formal properties of the Wigner-
BGK model:

Lemma 2.1 (Formal) Let f(t) be the solution of (2.7), (2.14), if it exists, and let
fI = f |t=0 . (ı) If ∫

fI
dx dp

(2π~)d
= Tr

{
W−1(fI)

}
= 1 ,

then, for all time t > 0, we have
∫
f(t, x, p)

dx dp

(2π~)d
= Tr

{
W−1(f(t))

}
= 1 .

(ıı) If fI is positive (in the sense of operators, i.e. ρI = W−1(fI) is a positive
operator), then, for all time t > 0, f(t) remains positive in this sense.

Proof. Since, by construction, for all f we have
∫
Q(f)

dx dp

(2π~)d
= 0 ,

item (ı) stems directly from an integration of (2.7), thanks to the useful identity
(3.33) written further. The second point can be more easily seen with the collisional
quantum Liouville equation (2.3) satisfied by ρ(t) = W−1(f(t)). With our choice of
a BGK collision operator, this equation takes the form:

∂tρ = − i

~
[H, ρ] +W−1(Mf) − ρ . (2.15)

Assuming that it exists, we denote by U(t, s) the two-parameter family of unitary
operators generated by − i

~
H(t), which is such that

∀ψ ∈ L2(Rd)
d

dt
U(t, s)ψ = − i

~
H(t)U(t, s)ψ, U(s, s)ψ = ψ .

Let σ(t) = U(−t, 0) et ρ(t)U(t, 0). Direct calculations show that this self-adjoint
operator σ solves

∂tσ = U(−t, 0) et W−1(Mf)U(t, 0), σ(0) = ρ(0). (2.16)

Since the source term in (2.15) takes the form

W−1(Mf) = exp(W−1(a + c|p|2)),
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it is clearly a positive operator and it is readily seen that U(−t, 0) et W−1(Mf)U(t, 0)
is also a positive operator. Hence, ρ(0) being positive, (2.16) implies that σ(t) is pos-
itive, as for ρ(t).

In the present paper, we are interested in the large-scale dynamics of the Wigner-
Boltzmann equation (2.7) with collision operator (2.14). Unlike [27], where the right
scaling was a hydrodynamic one, the relevant scaling here is of diffusion type. This
is related with the fact that we enforce only two moment constraints related with
mass and energy conservation and that we do not enforce momentum conservation.
Therefore, we introduce the following changes of variables

t′ = εt , Q′ = εQ , (2.17)

and get the rescaled Wigner equation (omitting the primes for simplicity):

ε2∂tf
ε + ε(p · ∇xf

ε − Θ[V ]f ε) = Q(f ε). (2.18)

An estimate of the dimensionless parameter ε can be found from the value µ of
the mobility of the material. From it, the mean collision time is τ = q−1mµ ∼ 10−12s,
where m is the electron effective mass and q the elementary charge. Then ε2 = τ/τQ,
where τQ is an estimate of the typical time of quantum phenomena. Such a time can
be, for instance, a typical life-time of a resonant level in an open device and can be
larger than τ be several orders of magnitude.

We are interested in the limit ε → 0 of the present equation, provided an initial
datum f |t=0 = fI is given. This limit is discussed in the next section.

3 Derivation of the Quantum Energy-Transport model

3.1 Statement of the result

The goal of this section is to prove the following:

Theorem 3.1 (Formal) Let f ε be the solution of the Wigner-BGK equation (2.18).
Then, formally, f ε → f as ε → 0, where f is a quantum Maxwellian f = Exp (A +
C|p|2) and (A,C) = (A(x, t), C(x, t)) are solutions of

∂t

∫
Exp (A+ C|p|2)

(
1
|p|2

)
dp

−
∫

T 2Exp (A + C|p|2)
(

1
|p|2

)
dp = 0 , (3.1)

and T is the quantum transport operator:

T f = (p · ∇x − Θ[V ])f . (3.2)
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We can write the Energy-Transport model in a slightly more explicit form. First,
we introduce some new notations. For any pair of function (A(t, x), C(t, x)), the
particle and energy densities n[A,C] and W[A,C] associated with A and C and
which depend nonlinearly and functionally on them are defined by

(
n[A,C]
W[A,C]

)
=

∫

Rd

(
1

|p|2/2

)
Exp (A + C|p|2) dp

(2π~)d
. (3.3)

We also introduce Π[A,C] (pressure tensor) and Q[A,C] (heat flux tensor) according
to:

Π[A,C] =

∫

Rd

p⊗ p Exp (A+ C|p|2) dp

(2π~)d
, (3.4)

Q[A,C] =

∫

Rd

|p|2
2
p⊗ p Exp (A+ C|p|2) dp

(2π~)d
. (3.5)

Now, we state:

Proposition 3.2 The Quantum Energy-Transport model (3.1) can be equivalently
written:

∂tn+ ∇ · Jn = 0 , (3.6)

∂tW + ∇ · Jw + Jn · ∇xV = 0 , (3.7)

where the mass and energy fluxes Jn and Jw are given by

Jn = −∇ · Π − n∇V , (3.8)

Jw = −∇ · Q −W ∇V − Π∇V +
~2

8
n∇x∆xV . (3.9)

where n, W, Jn, Jw are nonlinear functionals of A and C through (3.3), (3.4), (3.5).

The Quantum Energy-Transport system can be viewed equivalently as an evolu-
tion system for (A,C) or for (n,W) (through the inversion of the non-local relation
(3.3)). The relations between (Π,Q) and (A,C) or (n,W) are non-local in space
as well. This model appears as a system of two conservation equations (3.6), (3.7)
for the local density n and energy W. The density and energy fluxes Jn and Jw

are given in terms of n and W through the constitutive relations (3.8), (3.9). The
conservation equations (3.6), (3.7) are identical with those involved in the Classical
Energy-Transport model [23], [15], [13]. At variance, the flux relations (3.8), (3.9)
are significantly different in several aspects which we detail below.

First, the relation between (Jn, Jw) and (n,W) is non-local in space, through the
non-local dependence of Π and Q upon (n,W). In the Classical Energy-Transport
model, the fluxes are local (linear) combinations of the first-order gradients of (n,W).
Therefore, the Quantum Energy-Transport model involves a complete delocalization
of the expressions of the fluxes.
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Second, the tensors Π and Q are not diagonal in general. In the classical case,
Π and Q are diagonal thanks to the fact that the classical Maxwellian is an even
function of each component pi of p separately. In the quantum case, parity w.r.t. each
component pi of p separately is not preserved by quantum exponentiation (although
the parity with respect to p itself is preserved). It follows that, in general, Exp (A+
C|p|2) is not an even function of each component of p separately (although A+C|p|2
is, and although Exp (A+ C|p|2) is an even function of p as a whole).

Now, we discuss an important property satisfied by the Quantum Energy-Transport
model (3.1): entropy dissipation. More precisely, let us define the quantum fluid en-
tropy of the system as in [27]. Based on an analogy with the Boltzmann entropy
f(ln f − 1), it is written

S(n,W) =

∫
f0(Ln (f0) − 1)

dp dx

(2π~)d

=

∫
(A + C|p|2 − 1) Exp (A+ C|p|2) dp dx

(2π~)d

=

∫
(An + 2CW − n) dx , (3.10)

where (A,C) and (n,W) are related through (3.3) and f0 = Exp (A+C|p|2). In [27],
it was proved that S is a strictly convex functional of (n,W). Then, we have:

Proposition 3.3 Let (A,C) or (n,W) solve the Quantum Energy-Transport system
(3.1). Then the quantum fluid entropy S(n,W) is a decreasing function of time:

d

dt
S(n,W) ≤ 0 . (3.11)

Theorem 3.1 and Propositions 3.2 and 3.3 rely on the properties of the collision
operator Q, which are collected in the following:

Lemma 3.4 The collision operator Q(f) given by (2.14) has the following properties:
(i) Null space:

Q(f) = 0 ⇐⇒ ∃(A(x, t), C(x, t)) such that f = Mf = Exp (A+C|p|2) . (3.12)

(ii) Collisional invariants: For all f , we have:

∫
Q(f)

(
1
|p|2

)
dp = 0 . (3.13)

(iii) Quantum entropy decay: for all f , we have:

∫
Q(f)Ln f dx dp ≤ 0 , (3.14)

with equality if and only if f = Mf
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We shall also need the following intermediate results:

Lemma 3.5 For all f , we have:

∫
Θ(f)




1
p
|p|2


 dp

(2π~)d
=




0
−n∇xV
−2nu · ∇xV


 , (3.15)

where n and u are given by (2.9). Moreover, we have:

∫ |p|2
2
p Θ[V ]f

dp

(2π~)d
= −(W Id + P)∇xV +

~2

8
n∇x∆xV . (3.16)

where Id is the identity tensor, W is defined by (2.9) and

P =

∫

Rd

p⊗ p f
dp

(2π~)d
,

is the pressure tensor.

Lemma 3.6 Let ρ = W−1[f ] be a hermitian operator associated with the real-valued
symbol f(x, p) and with integral kernel ρ(x, y). Then, we have

f even w.r.t. p ⇐⇒ ρ symmetric (or real-valued) ,

f odd w.r.t. p ⇐⇒ ρ anti-symmetric (or pure imaginary) ,

and

f even w.r.t. p =⇒ Exp f even w.r.t. p .

Finally, we recall the following lemma, which was proved in [61], [27]:

Lemma 3.7 Let g be a strictly increasing continuously differentiable function defined
on R+. Consider that the fonction

G(ρ) = Tr{g(ρ)} , (3.17)

is defined on the space of trace-class positive self-adjoint operators ρ. Then G is
Gâteaux differentiable and its Gâteaux derivative δG/δρ is given by:

δG

δρ
δρ = Tr{g′(ρ)δρ} . (3.18)

We note an immediate corollary of this Lemma:

12



Lemma 3.8 Suppose that ρ = ρ(s) is a continuously differentiable function of the
real variable s. Then, G(ρ(s)) with G defined by (3.17) is a continously differentiable
function from R to R and

d

ds
G(ρ(s)) = Tr{g′(ρ(s))dρ

ds
} , (3.19)

The proofs of the main results (Theorem 3.1 and Propositions 3.2 and 3.3) are
given in the next section. The proof of the auxilliary lemmas (Lemmas 3.4, 3.5 and
3.6) are deferred to a forthcoming section.

3.2 Proofs of the main results

Proof of Theorem 3.1. We assume that f ε → f0 as ε → 0 and that the convergence
holds in a space of smooth functions (in this work, we shall stay at the formal level).
We rewrite (2.18) shortly:

ε2∂tf
ε + εT f ε = Q(f ε). (3.20)

Then, at leading order, (3.20) implies that Q(f0) = 0. Thus, using (3.12), we deduce
that there exists (A(x, t), C(x, t)), such that

f0 = Exp (A+ C|p|2) . (3.21)

Now, we introduce the following (Chapman-Enskog) expansion:

f ε = Mfε + εf ε
1 , (3.22)

thus defining f ε
1 . Then, clearly:

1

ε
Q(f ε) = −f ε

1 .

Inserting this expression into (3.20), we get:

f ε
1 = −T f ε + ε∂tf

ε . (3.23)

Therefore, as ε→ 0, f ε
1 → f1 such that

f1 = −T f0 . (3.24)

Next, multipliying (3.20) and using the conservation properties (3.13), we get:

∂t

∫
f ε

(
1
|p|2

)
dp+

1

ε

∫
T f ε

(
1
|p|2

)
dp = 0 . (3.25)

13



Now, using (3.22), we have

T f ε = TMfε + εT f ε
1 . (3.26)

Let (Aε(x, t), Cε(x, t)) be such that Mfε = Exp (Aε + Cε|p|2). Since, Aε + Cε|p|2 is
an even function of p, thanks to Lemma 3.6, Mfε is even w.r.t. p, and so, TMfε is
odd w.r.t. p (one can see from (2.8) that if f is even then Θf is odd). It follows that

∫
T Mfε

(
1
|p|2

)
dp = 0 . (3.27)

Therefore, from (3.25), (3.26) and (3.27), we deduce that:

∂t

∫
f ε

(
1
|p|2

)
dp+

∫
T f ε

1

(
1
|p|2

)
dp = 0 .

Taking the limit ε → 0 gives

∂t

∫
f0

(
1
|p|2

)
dp+

∫
T f1

(
1
|p|2

)
dp = 0 . (3.28)

Inserting the expressions of f0 and f1 (Eqs. (3.21) and (3.24)) into (3.28) leads to
(3.1), which ends the proof.

Proof of Proposition 3.2. Going back to (3.28), we use the expression of T and
Lemma 3.5 to write:
∫

T f1

(
1
|p|2

)
dp = ∇x ·

∫
pf1

(
1
|p|2

)
dp+

∫
f1

(
0
2p

)
dp · ∇xV . (3.29)

We define (
Jn

Jw

)
=

∫ (
1

|p|2/2

)
pf1

dp

(2π~)d
. (3.30)

Then, system (3.6) and (3.7) is nothing but (3.28) written using these notations.
Now, inserting (3.24) into (3.30) and using again Lemma 3.5 leads to (3.8) and (3.9).

Proof of Proposition 3.3. We multiply (3.20) by Ln (f ε) and integrate with
respect to x and p:
∫

(Ln f ε)∂tf
ε dx dp+ ε−1

∫
(Ln f ε)T f ε dx dp = ε−2

∫
(Ln f ε)Q(f ε) dx dp .

Writing ρε = W−1[f ε] and using Lemma 3.8, we remark that

d

dt

∫
f ε(Ln f ε − 1)

dp dx

(2π~)d
=

d

dt
Tr (ρε(ln ρε − Id))

= Tr (ln ρε∂tρ
ε)

=

∫
(Ln f ε)∂tf

ε dp dx

(2π~)d
.
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We also note that

−i~
∫

(Ln f ε)T f ε dp dx

(2π~)d
=

∫
(Ln f ε)W (Hρε − ρεH)

dp dx

(2π~)d

= Tr {(ln ρε) [Hρε − ρεH]}
= Tr {H [ρε(ln ρε) − (ln ρε)ρε]}
= 0 ,

where we used the cyclicity of the trace (i.e. Tr{ρ1 . . . ρn} is invariant under cyclic
permutations of {ρ1, . . . , ρn}), and the fact that any function of ρ commutes with ρ.
Now, from (3.14), we deduce that

d

dt

∫
f ε(Ln f ε − 1) dx dp ≤ 0 .

To complete the proof, we pass to the limit ε → 0. This ends the proof of the
proposition since f ε converges to f0 = Exp (A+ C|p|2), where (A,C) is the solution
of the Quantum Energy-Transport model.

3.3 Proofs of the auxiliary lemmas

Proof of Lemma 3.4. Properties (i) and (ii) are obvious. The only property to be
proved is (iii) (entropy decay).

Let f be a given distribution function. Then, we can write Mf = W [ρ] where ρ
is the solution of the minimization problem (2.11), in which (n,W) are the moments
of f given by (2.9). From [27] and Lemma 3.7, we know that ρ → H [ρ] is convex
and that its derivative is written

DHρ0
(ρ) = Tr (ln (ρ0) ρ) .

Let us now introduce the function

Λ : λ ∈ [0, 1] 7→ H
(
W−1((1 − λ)Mf + λf)

)
.

By the chain rule, this function is differentiable and we have

dΛ

dλ
(λ) = Tr

(
ln (W−1((1 − λ)Mf + λf))W−1(f −Mf)

)

=

∫
Ln ((1 − λ)Mf + λf) (f −Mf)

dp dx

(2π~)d
.

Moreover, the convexity of H implies that Λ is also convex. Thus we have

dΛ

dλ
(1) ≥ Λ(1) − Λ(0) ,
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which can also be written
∫

Ln (f) (f −Mf)
dp dx

(2π~)d
≥ H(f) −H(Mf) ≥ 0 , (3.31)

since Mf is a minimizer.
Now, the left-hand side of (3.31) vanishes identically if and only ifH(f) = H(Mf)

which is equivalent to saying that f = Mf since we assumed that the minimizer Mf

is unique. This ends the proof of (iii) and of Lemma 3.4.

Proof of Lemma 3.5. Denoting the Fourier transform with respect to the p-variable
by ·̂, the operator Θ[V ] is such that

Θ̂[V ]f = i
V (t, x+ ~

2
η) − V (t, x− ~

2
η)

~
f̂(t, x, η). (3.32)

Therefore, for smooth enough functions V and f decaying fast enough at infinity, we
have the following useful identities:

∫

Rd

Θ[V ]f dp = (2π)d Θ̂[V ]f (t, x, 0) = 0, (3.33)

∫

Rd

pΘ[V ]f dp = i(2π)d ∇η Θ̂[V ]f (t, x, 0)

= −(2π)d∇xV (t, x) · f̂(t, x, 0)

= −∇xV ·
∫

Rd

f dp,

(3.34)

∫

Rd

|p|2
2

Θ[V ]f dp = −1

2
(2π)d ∆η Θ̂[V ]f (t, x, 0)

= −i (2π)d∇xV (t, x) · ∇ηf̂(t, x, 0)

= −∇xV ·
∫

Rd

pf dp

(3.35)

and some straightforward calculations lead to (3.16). This concludes the proof of
Lemma 3.5.

Proof of Lemma 3.6. The first two statements obviously follow from a change
p → −p in (2.6). We now prove that the parity is preserved in taking the quantum
exponential. Let ρ be the integral kernel of W−1f and suppose that ρ is real-valued.
Then, the integral kernel of ρ2 is

ρ2(x, y) =

∫
ρ(x, z)ρ(z, y) dz ,

and is also real-valued. Similarly, by induction, the integral kernel of any power of
ρ is real valued. Therefore, exp ρ being the sum of a series of powers of ρ, its in-
tegral kernel is also real valued, from which we conclude that Exp f is even w.r.t. p.

16



4 Derivation of the Quantum Drift-Diffusion model

This section is devoted to the derivation of the Quantum Drift-Diffusion model. The
Quantum Drift-Diffusion model describes the long term behaviour of a quantum
system interacting with a thermal bath at a given temperature. Therefore, the energy
of the quantum system is not locally (neither globally) conserved. The resulting
model consists of a single conservation equation for the particle density only, with
an instantaneous (but non-local in space) relation between the particle current and
the density. By contrast, in the Quantum Energy-Transport model, the energy is
locally conserved, which implies that the temperature evolves according to the energy
balance equation. The resulting model, as we have seen in the previous section, is a
system of conservation equations for the density and the energy.

The starting point for the derivation of the Quantum Drift-Diffusion model is
again the quantum Boltzmann equation (2.18), but with a different collision operator,
which we are now going to introduce.

First, we introduce the convenient entropy concept for systems interacting with a
thermal bath at a given temperature T0. This is the so-called relative entropy, given
by:

H̃ [ρ] =

∫
f(Ln f − 1 +

h(x, p)

T0
)
dx dp

(2π~)d
,

= Tr{ρ(ln ρ− 1 +
H
T0

)} , (4.1)

with f = W [ρ]. We recall the H is the quantum Hamiltonian (2.2) and h its symbol
(2.4).

Now, we consider the problem of minimizing H̃ under the constraint of given
density. More precisely, given a density function n(x), we consider the problem:

min {H̃ [ρ] |
∫
W [ρ](x, p)

dp

(2π~)d
= n(x) ∀x ∈ Rd } . (4.2)

Assuming that this minimization problem has a solution, this solution is given
by ρ̃ã = W−1[f̃ã] with

f̃ã = Exp

(
ã(x) − h(x, p)

T0

)
,

where ã(x) is such that
∫
f̃ã(x, p)

dp

(2π~)d
= n(x) ∀x ∈ Rd .

Now, with (2.4) we can write

f̃ã = Exp

(
ã(x) − V (x)

T0
− |p|2

2T0

)
= Exp

(
a(x) − |p|2

2T0

)
,
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with a = ã− V/T0. We shall denote

fa = Exp

(
a(x) − |p|2

2T0

)
, ρa = W−1[fa] , (4.3)

the equilibria of this problem.
Now, for given f(x, p), we define M̃f as the quantum maxwellian (4.3) which has

the same density as f , i.e.

M̃f = Exp

(
a− |p|2

2T0

)
such that

∫
(M̃f − f) dp = 0 .

We shall suppose that the integral constraint fixes the function a in a unique way.
Then, we define the collision operator as

Q̃(f) = M̃f − f . (4.4)

This collision operator models the interaction of the particle system with a back-
ground of fixed temperature T0. The interaction leaves the local number of particles
unchanged and relaxes the distribution towards the quantum Maxwellian M̃f . In
classical semiconductor kinetic theory, this operator would model electron-phonon
scattering (without taking the elastic limit) while electron-electron scattering is ne-
glected [23], [15], [13] (refer to the end of section 2 for a comparison with the Energy-
Transport case).

In this section, we shall perform a diffusion approximation of the Wigner-BGK
equation (3.20), i.e.

ε2∂tf
ε + εT f ε = Q̃(f ε). (4.5)

where now, the BGK-like collision operator Q̃ is given by (4.4). We only state the
results: the proofs are very similar to those concerning the Energy-Transport model.

Theorem 4.1 (Formal) Let f ε be the solution of the Wigner-BGK equation (4.5).
Then, formally, f ε → f as ε → 0, where f is a quantum Maxwellian f = Exp (A−
|p|2/(2T0)) and A = A(x, t) is a solution of

∂t

∫
Exp

(
A(x) − |p|2

2T0

)
dp−

∫
T 2Exp

(
A(x) − |p|2

2T0

)
dp = 0 , (4.6)

where we recall that T is the quantum transport operator (3.2).

We can write the Drift-Diffusion model in the form of a conservation law. First,
for any function A(x), the particle density n[A] associated with A is defined by

n[A] =

∫
Exp

(
A(x) − |p|2

2T0

)
dp

(2π~)d
. (4.7)

We also introduce Π[A] (pressure tensor) according to:

Π[A] =

∫
p⊗ p Exp

(
A(x) − |p|2

2T0

)
dp

(2π~)d
, (4.8)

Now, we state:
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Proposition 4.2 The Quantum Drift-Diffusion model can be equivalently written:

∂tn + ∇ · J = 0 , (4.9)

where the mass flux J is given by

J = −∇ · Π − n∇V , (4.10)

and n and Π are nonlinear functionals of A through (4.7) and (4.8).

The Quantum Drift-Diffusion system can be viewed equivalently as an evolution
system for A or for n (through the inversion of the non-local relation (4.7)). The
relations between Π and A or n are non-local in space as well. This model is a
conservation equation (4.9) for the local density n. The density flux J is given in
terms of n through the constitutive relation (4.10). These two equations are formally
identical with those involved in the Classical Drift-Diffusion model [23], [15], [13].
However, the difference is in the relation between Π and n, which is non-local in the
quantum case, and in the fact that Π is not a diagonal tensor in general (for the
same reason as in the Energy-Transport case).

The Drift-Diffusion model satisfies an entropy dissipation property. More pre-
cisely, let us define the quantum relative fluid entropy of the system as:

S̃(n) =

∫
f0

(
Ln (f0) − 1 +

h(x, p)

T0

)
dp dx

(2π~)d

=

∫ (
A(x) − 1 +

V

T0

)
Exp

(
A(x) − |p|2

2T0

)
dp dx

(2π~)d

=

∫
n

(
A+

V

T0
− 1

)
dx ,

where A and n are related through (4.7) and f0 = Exp (A − |p|2/2T0). Then, we
have:

Proposition 4.3 Let A or n solve the Quantum Drift-Diffusion system (4.6). Then
the quantum fluid entropy satisfies:

d

dt
S̃(n) ≤ 1

T0

∫
n ∂tV dx . (4.11)

If the potential V is independent of time, then S̃(n) is a decreasing function of time:

d

dt
S̃(n) ≤ 0 . (4.12)

Like for the Energy-Transport model, these results rely on the following properties
of Q̃, the proof of which is a straightforward extension of that of Lemma 3.4.
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Lemma 4.4 The collision operator Q̃(f) given by (4.4) has the following properties:
(i) Null space:

Q̃(f) = 0 ⇐⇒ ∃A(x, t) such that f = M̃f = Exp

(
A− |p|2

2T0

)
. (4.13)

(ii) Collisional invariants: For all f , we have:

∫
Q̃(f) dp = 0 . (4.14)

(iii) Quantum entropy decay: for all f , we have:

∫
Q̃(f)

(
Ln f +

h

T0

)
dx dp ≤ 0 , (4.15)

with equality if and only if f = M̃f

We note that, since M̃f is a minimizer of the relative entropy (4.1), we need to
add a term h/T0 to the entropy inequality (4.15). This term is the reason for the
appearence of a right-hand side to the entropy inequality (4.11), which only vanishes
if V is independent of time. In the case where V is related with n through the
Poisson equation:

−∆V = n +D , (4.16)

where D is a given time independent background charge density, this term is a total
time derivative:

1

T0

∫
n ∂tV dx =

1

2T0

d

dt

∫
|∇(V + V0)|2 dx ,

with ∆V0 = D. In that case, we recover the perfect decay of the quantity
∫ (

nA− n+
1

2T0
|∇V |2

)
dx .

5 Expansions in powers of ~

5.1 Statement of the results

The goal of this section is to relate the Quantum Energy-Transport (QET) and
Quantum Drift-Diffusion (QDD) models with their classical counterparts (the Clas-
sical Energy-Transport (CET) and Classical Drift-Diffusion (CDD) models) through
the ~ → 0 limit. We also aim at finding the leading order correction to these classi-
cal models in an expansion in powers of ~ (i.e. terms of order ~2). The so-obtained
models will be called the Quantum Energy-Transport up to order ~2 (QET2) and
Quantum Drift-Diffusion up to order ~2 (QDD2). This approach can be viewed as
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an application of the semi-classical method (see e.g. [48], [47], [1], [68]) which has
been illustrated in the nonlinear case in the work by Grenier [45].

The QDD2 model turns out to be identical with the classical CDD model corrected
by the Bohm potential [42]. The Bohm potential usually appears in the context of
Quantum Hydrodynamic models. For the sake of completeness, let us briefly review
this theory.

Starting from the Schrödinger equation

i~∂tψ = Hψ ,

with H being the Hamiltonian (2.2), we use the Madelung transformation ψ =√
n exp iS/~ where the density n and the phase S are real-valued functions of (x, t).

Inserting this expression into the Schrödinger equation and taking real and imaginary
parts, we are led to the following system of equations:

∂tn+ ∇ · (nu) = 0 , (5.1)

∂tS +
1

2
|∇S|2 + V + VB[n] = 0 , (5.2)

where

VB[n] = −~2

2

1√
n

∆(
√
n) , (5.3)

is the so-called Bohm potential and u = ∇S is the velocity. Eq. (5.1) is the mass
convection equation under the velocity u while (5.2) is the classical Hamilton-Jacobi
equation perturbed by the Bohm potential ṼB, which is a correction of order ~2.

Taking the gradient of (5.2), we obtain the momentum conservation equation:

∂tu+ u · ∇u+ ∇(V + VB[n]) = 0 , (5.4)

System (5.1), (5.4) is the system of pressureless Euler equations with, added to the
external potential V , the quantum mechanical contribution ṼB. However, it should
be bore in mind that this system is equivalent to the single-particle Schrödinger equa-
tion, and as such, does not apply to many-particle systems. To cure this defficiency,
one should add other terms to the momentum equation (5.4) (such as pressure,
viscosity, etc) and derive an energy balance equation. One finds in the literature
several attemps to realize this programme by introducing some statistical averages
over mixed quantum states [43], [32], [38], [39], [40]. However, a major obstacle on
this way is the question of closing the so-obtained chain of statistical equations. In
[27] it has been proposed that the closure Ansatz should use Quantum Maxwellians
as defined in the present work.

However, our aim here is the derivation of diffusion rather than hydrodynamic
models. Diffusion models differ from hydrodynamic ones in the fact that the veloc-
ity (or the flux) is prescribed in terms of the other state variables of the problem
at all times (see e.g. (3.8) or (4.10)), rather than given through a time-differential
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relation like in (5.4). The derivation of diffusion models from kinetic ones involves a
diffusion scaling like (2.17) rather than a hydrodynamic one (where the same power
of ε appears in the scaling of x and t). Therefore, the limits are different. However,
it turns out that the same Bohm potential term appears as the leading order quan-
tum correction term to the classical Drift-Diffusion model. This is related with the
fact that drift-diffusion models can be derived from relaxed quantum hydrodynamic
systems under a diffusive scaling. We simply note that our approach gives rise to a
discrepancy of a factor 1/3 to the Bohm potential term which would be obtained by
such a method (see (5.7)). So far, there is no physical expanation to this discrepancy.

The Classical Drift-Diffusion system corrected with the Bohm potential has al-
ready been used in the physics or mathematics literature [2], [3], [18], [64], [65]. Our
approach provides another derivation of this model. As a by-product of our the-
ory, we also prove that the QDD2 model is entropic. More precisely, expanding the
entropy functional ST in powers of ~2 and retaining terms up to order ~2, we find
an approximate quantum entropy functional, which is still convex and which decays
along solutions of the QDD2 model.

We now turn to the statement of the main results concerning the QDD2 model.

Theorem 5.1 (i) Let n~, J~, the solution of the Quantum Drift-Diffusion (QDD)
model (4.9), (4.10). Then, we formally have:

n~ = n +O(~4) , J~ = J +O(~4) ,

where n and J satisfy the Quantum Drift-Diffusion up to order ~2 (QDD2):

∂tn+ ∇ · J = 0 , (5.5)

J = −T0∇n− n∇(V + VB[n]) , (5.6)

and where

VB[n] =
1

3
VB[n] = −~2

6

1√
n

∆(
√
n) , (5.7)

is the rescaled Bohm potential.
(ii) Let the fluid entropy up to order ~2 be defined by:

S̃2[n] =

∫

Rd

n(ln n− 1 +
V + VB

T0
) dx . (5.8)

Then, S̃2[n] is twice Gâteaux differentiable and strictly convex and we have for any
solution n of (5.5), (5.6):

d

dt
S̃2[n] = −

∫

Rd

1

nT0
|T0∇n+ n∇(V + VB[n])|2 dx+

∫

Rd

n

T0
∂tV dx (5.9)

≤
∫

Rd

n

T0
∂tV dx . (5.10)

In particular, if the potential V is independent of time, then the entropy S̃2 decays
along the solutions of the QDD2 model.
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Like at the end of section 4, we remark that, if V is related with n through the
Poisson equation (4.16), the following quantity decays in time:

∫ (
nln n− n+

1

2T0

|∇(V + V0)|2 +
~2

6T0

|∇
√
n|2
)
dx .

If we let VB = 0 in (5.5), (5.6) we recover the classical CDD model. Of course, in
this model, T0 is a constant: the temperature of the system is the same as the lattice
temperature. However, if we expand the pressure tensor given by (4.8) with respect
to ~ (Eq. (5.33)) and compute the quantity T ~ = Tr Π~/(dn~), we get

T ~ = T0 −
~2

12d
∆ln n~ + O(~4).

Therefore, a generalized temperature for the QDD2 system can be defined by T =
T0 − ~

2

12d
∆ln n and is not identical to the lattice temperature.

We note that the Bohm potential VB which appears in the QDD2 model is divided
by a factor 3 compared with that appearing in the Quantum Hydrodynamic model
VB (see (5.4)). This factor 3 is not related with the dimension since the derivation has
been performed in arbitrary dimension d. The physical reason for this discrepancy
between the two models is not yet understood.

We now turn to the QET2 model. It is unfortunate that, in this case, the ~2

correction from the CET model does not appear so simple. More precisely, we have:

Theorem 5.2 (i) Let n~, W~, (Jn)~, (Jw)~ be the solution of the Quantum Energy-
Transport (QET) model (3.6), (3.7), (3.8), (3.9) with pressure and heat-flux tensors
Π~ and Q~ related with (n~,W~) through (3.4), (3.5) and (3.3). Then, we formally
have:

(n~,W~, (Jn)~, (Jw)~) = (n,W, Jn, Jw) +O(~4) ,

where (n,W, Jn, Jw) satisfies the Quantum Energy-Transport up to order ~2 (QET2).
The QET2 model consists of the same balance equations (3.6), (3.7) and constitutive
relations (3.8), (3.9) as the QET model. Only, the relation between the pressure and
heat-flux tensors (Π,Q) with (n,W) changes and is now given by:

Πrs = δrs nT

+
~2

12d
n δrs

(
∆xln n + 2∆xln T + 2∇xln n · ∇xln T − d+ 2

2
|∇xln T |2

)

+
~2

12
n

(
− ∂2

rsln n− 2∂2
rsln T − ∂rln n ∂sln T − ∂rln T ∂sln n

+
d+ 2

2
∂rln T ∂sln T

)
,

(5.11)
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Qrs =
d+ 2

2
δrs nT

2

+
~2

24d
n T δrs

(
(d+ 4)∆xln n + (d+ 8)∆xln T

+2(d+ 4)∇xln n · ∇xln T +
d2 − 4d− 8

2
|∇xln T |2

)

+
~2

24
(d+ 4)nT

(
− ∂2

rsln n− 3∂2
rsln T − ∂rln n ∂sln T

−∂rln T ∂sln n +
d

2
∂rln T ∂sln T

)
,

(5.12)

where the generalized temperature T is given by the classical relation

T =
2

d

W
n
. (5.13)

We note that there is apparently no entropic structure to the QET2 model. The
expansion up to order ~2 terms of the entropy S(n,W) defined by (3.10) does not
decay along the trajectories of the QET system, or at least, we were unable to prove
so.

In order to simplify the QET2 model, we investigate the case where the generalized
temperature T varies slowly compared with the density n. To describe this situation,
we introduce a small parameter η ≪ 1 and we assume that

|∇ln T |
|∇ln n| = O(η) .

In the limit η → 0, we get the following expressions for the currents:

Jn = −∇
(
nT +

~2

12d
n∆ln n

)
− n∇(V + VB[n]) ,

Jw = −∇
(
d+ 2

2
nT 2 +

~2

24

d+ 4

d
n T ∆ln n

)
− d+ 4

2
nT ∇VB[n]

−
(
d+ 2

2
nT +

~2

12d
n∆ln n

)
∇V +

~2

12
n (∇∇ln n)∇V +

~2

8
∇∆ln n .

In the next sections, we develop the proofs of theorems 5.1 and 5.2. We first start
with some preliminaries.

5.2 Preliminaries

We first prove

Proposition 5.3 Let a(x, p) be a smooth symbol. Then, we have the following ex-
pansion:

Exp a = exp a− ~2

8
exp a

(
∂2

xixj
a ∂2

pipj
a− ∂2

xipj
a ∂2

pixj
a
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+
1

3
∂2

xixj
a ∂pi

a ∂pj
a− 2

3
∂2

xipj
a ∂pi

a ∂xj
a+

1

3
∂2

pipj
a ∂xi

a ∂xj
a

)
+ O(~4) ,

(5.14)

where Einstein’s convention has been used.

First, given two symbols w1(x, p) and w2(x, p), we define the operation w1 ◦~ w2

as the symbol of their operator product, i.e.

w1 ◦~ w2 = W [W−1(w1)W
−1(w2)] . (5.15)

As a direct application of pseudo-differential calculus (see [68], [1], [48]), we have:

Lemma 5.4 The following formal expansion holds (provided that the symbols wi are
infinitely differentiable):

w1 ◦~ w2(x, p) =
∑

α,β

(
i~

2

)|α|+|β|
(−1)|β|

α!β!
∂α

x ∂
β
pw1(x, p) ∂

β
x∂

α
pw2(x, p) (5.16)

where α = (α1, . . . , αd) ∈ Nd is a multi-index, |α| =
∑

i αi, α! =
∏

i αi!, ∂
α
x =

∏
i ∂

αi
xi

and similarly for β.

Thanks to this Lemma, we can write:

w1 ◦~ w2 =
∞∑

n=0

~nw1 ◦n w2 , (5.17)

with

w1 ◦n w2(x, p) =
∑

α,β,|α|+|β|=n

(
i

2

)n
(−1)|β|

α!β!
∂α

x ∂
β
pw1(x, p) ∂

β
x∂

α
pw2(x, p) (5.18)

In particular, we have:

w1 ◦0 w2 = w1w2 , (5.19)

w1 ◦1 w2 =
i

2
(∇xw1 · ∇pw2 −∇pw1 · ∇xw2) (5.20)

w1 ◦2 w2 = −1

8
(∇2

xw1 : ∇2
pw2 − 2∇x∇pw1 : ∇p∇xw2 + ∇2

pw1 : ∇2
xw2)(5.21)

where ∇2 denotes the Hessian matrix and : the contracted product of tensors. Thanks
to the exchange of α and β in (5.18), it is easy to see that

w1 ◦n w2 = (−1)nw2 ◦n w1 ,

in other words, the operation ◦n is commutative (resp. anticommutative) when n is
even (resp. odd).
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With these preliminaries, we can now prove Proposition 5.3:

Proof of Proposition 5.3. We use the Bloch equation formalism. More precisely,
let F (t) = Exp (ta) = W [exp(tW−1(a))]. Then

dF

dt
= W [W−1(a) exp(tW−1(a))] = W [exp(tW−1(a))W−1(a)]

=
1

2
{W [W−1(a) exp(tW−1(a))] +W [exp(tW−1(a))W−1(a)]}

=
1

2
(a ◦~ F (t) + F (t) ◦~ a) .

We let F (0) = 1, so that F (1) = W [exp(W−1(a))] = Exp (a), which is the object to
be computed. We expand F =

∑∞
n=0 ~nFn. Then Fn solves:

dFn

dt
=

1

2

n∑

m=0

(a ◦m Fn−m + Fn−m ◦m a)

=
m=n∑

m=0,m even

a ◦m Fn−m ,

with initial condition Fn(0) = δn0, where δn0 denotes the Kronecker symbol.
We first have:

dF0

dt
= aF0 , F0(0) = 1 ,

which yields F0 = eat. Then, we have:

dF1

dt
= aF1 , F1(0) = 0 .

Thus, F1 ≡ 0. Then:

dF2

dt
= a ◦0 F2 + a ◦2 F0

= aF2 −
1

8
(∇2

xa : ∇2
pF0 − 2∇x∇pa : ∇p∇xF0 + ∇2

pa : ∇2
xF0)

= aF2 −
1

8
(∇2

xa : (t∇2
pa + t2∇pa∇pa)

−2∇x∇pa : (t∇p∇xa+ t2∇pa∇xa) + ∇2
pa : (t∇2

xa+ t2∇xa∇xa))F0

(where the product of two vectors means a tensor product) together with F2(0) = 0.
Integrating with respect to t, we get:

F2(t) = −1

8
(∇2

xa : (
t2

2
∇2

pa+
t3

3
∇pa∇pa)

−2∇x∇pa : (
t2

2
∇p∇xa +

t3

3
∇pa∇xa) + ∇2

pa : (
t2

2
∇2

xa +
t3

3
∇xa∇xa))F0 .
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Finally, we have

dF3

dt
= a ◦0 F3 + a ◦2 F1 = aF3 , F3(0) = 0 ,

which gives F3 ≡ 0.
We deduce:

Exp a = ea{1 − ~2

8
[∇2

xa : (
1

2
∇2

pa+
1

3
∇pa∇pa)

−2∇x∇pa : (
1

2
∇p∇xa+

1

3
∇pa∇xa) + ∇2

pa : (
1

2
∇2

xa+
1

3
∇xa∇xa) ]

+O(~4)}

= ea{1 − ~2

8
(∇2

xa : ∇2
pa−∇x∇pa : ∇p∇xa

+
1

3
(∇2

xa : ∇pa∇pa− 2∇x∇pa : ∇pa∇xa+ ∇2
pa : ∇xa∇xa))

+O(~4)} , (5.22)

which is formula (5.14) and ends the proof.

We now specialize (5.14) to a symbol of the form: M(x, p) = exp(A(x)+C(x)|p|2).
Without detailing the computations, we can state:

Lemma 5.5 The following formula holds:

Exp
(
A(x) + C(x)|p|2

)
= M − ~2

8
M F (2)(A,C) + O(~4) , (5.23)

where

F (2)(A,C) = 2C ∂2
iiA+ 2C |p|2 ∂2

iiC − 4pipj ∂iC ∂jC

+
4

3
C2pipj ∂

2
ijA+

4

3
C2pipj |p|2 ∂2

ijC

−8

3
C pipj ∂iC ∂jA− 8

3
C pipj |p|2 ∂iC ∂jC

+
2

3
C (∂iA)2 +

4

3
C |p|2 ∂iA∂iC +

2

3
C |p|4 (∂iC)2 . (5.24)

For simplicity, ∂2
ijA and ∂2

ijC denote ∂2
xixj

A and ∂2
xixj

C.

At the leading order in ~, we have Exp (A+ C|p|2) = M . Let us denote

n0(t, x) =

∫

Rd

M(t, x, p)
dp

(2π~)d
=

∫

Rd

exp(A+ C|p|2) dp

(2π~)d

=
(
− π

C

)d/2 1

(2π~)d
eA. (5.25)

Next, integrating (5.23) with respect to p and using the moments of M computed in
the Appendix, we obtain approximations of n, W, Π, Q (see formulae (3.3), (3.4),
(3.5)) up to terms of order O(~2) as stated in the following:
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Lemma 5.6 We have:

n = n0 −
~2

6
n0C

(
∆A +

1

2
|∇A|2 − (d− 2)

2
∇A · ∇C

C

−(d− 1)

2

∆C

C
+

(d2 − 2d+ 4)

8

|∇C|2
C2

)
+ O(~4) , (5.26)

2W = − d

2C
n0 +

~2

12
n0

(
(d− 1)∆A+

d

2
|∇A|2 − d2 − 4

2
∇A · ∇C

C

−(d2 − 4)

2

∆C

C
+

(d− 2)(d+ 2)2

8

|∇C|2
C2

)
, (5.27)

(5.28)

and, for any pair r, s of indices:

Πrs = − δrs

2C
n0 +

~2

12
n0 δrs

(
∆A +

1

2
|∇A|2 − d

2
∇A · ∇C

C

−(d+ 1)

2

∆C

C
+

(d2 + 2d+ 4)

8

|∇C|2
C2

)

+
~2

12
n0

(
−∂2

rsA+ ∂rA
∂sC

C
+ ∂sA

∂rC

C

+
(d+ 4)

2

∂2
rsC

C
− (d+ 1)

∂rC ∂sC

C2

)
+ O(~4) , (5.29)

Qrs =
(d+ 2) δrs

8C2
n0 −

~2

48

n0

C
δrs

(
(d+ 1) ∆A+

(d+ 2)

2
|∇A|2

−d(d+ 4)

2
∇A · ∇C

C
− d(d+ 4)

2

∆C

C
+
d(d+ 4)2

8

|∇C|2
C2

)

−~2

48

n0

C

(
−(d+ 4) ∂2

rsA + (d+ 4) ∂rA
∂sC

C
+ (d+ 4) ∂sA

∂rC

C

+
(d+ 4)(d+ 6)

2

∂2
rsC

C
− (d+ 3)(d+ 4)

∂rC ∂sC

C2

)
+ O(~4) .(5.30)

We note that (5.27) can be deduced from (5.29) because 2W = Tr Π.

After these preliminaries, we can proceed to the proof of Theorem 5.1.

5.3 Proof of Theorem 5.1

(i) In the case of the Quantum Drift-Diffusion, the temperature T0 is specified and
we have C = −1/(2T0). Therefore (5.25), (5.26) and (5.29) become

n0 =

(
2πT0

(2π~)2

)d/2

eA , (5.31)

n = n0 +
~2

12

n

T0

(
∆A+

1

2
|∇A|2

)
+ O(~4) , (5.32)
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Πrs = δrs T0 n0 +
~2

12
n0

(
δrs ∆A +

1

2
δrs |∇A|2 − ∂2

rsA

)
+ O(~4)

= δrs T0 n− ~2

12
n ∂2

rsA + O(~4) . (5.33)

Eq. (5.33) relates Π to n and A. But A is related with n through (5.31) and (5.32).
We want to use these relations to eliminate A from (5.33), or, more precisely, from
the term −∇ · Π which appears in the current equation (4.10). In the course of this
computation, we are allowed to drop terms of order ~4 or more. Thanks to (5.33),
we have

−(∇ · Π)r = −
∑

s

∂sΠrs = −T0 ∂rn+
~2

12

(
∑

s

∂sn ∂
2
rsA+ n

∑

s

∂3
rssA

)
+ O(~4).

But, from (5.31), we have:

ln n0 = A +
d

2
ln (2πT0) − d ln (2π~) = A−KT0

,

thus defining the constant KT0
. Hence we deduce that

∇A =
∇n0

n0

=
∇n
n

+ O(~2)

and consequently, that

−∇ · Π = −T0∇n +
~2

12
n∇

(
∆A+

1

2
|∇A|2

)
+ O(~4) .

Besides, the identity

∆A =
∆n

n
− |∇n|2

n2
+ O(~2) ,

implies that

∆A+
1

2
|∇A|2 =

∆n

n
− 1

2

|∇n|2
n2

+ O(~2) = 2
∆
√
n√
n

+ O(~2) .

Therefore, if we introduce the quantum Bohm potential VB[n] according to (5.7), we
get

−∇ · Π = −T0 ∇n− n∇VB[n] + O(~4) . (5.34)

Inserting this expansion in (4.10) and omitting the remainder of order O(~4), we get
(5.6), which ends the proof of part (i) of the theorem.

(ii) We now recall that the fluid entropy introduced in Section 4 is

S̃[n] =

∫

Rd

n

(
A+

V

T0
− 1

)
dx .
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Let us expand this expression with respect to ~. We have A = ln n0 +KT0
. Moreover

(5.32) gives

ln n0 = ln n− ~2

12

1

T0

(
∆A+

1

2
|∇A|2

)
+ O(~4) ,

from which we deduce:

n

(
A+

V

T
− 1

)
=

= n

(
ln n− ~2

12

1

T0

(
∆A+

1

2
|∇A|2

)
+KT0

+
V

T0
− 1

)
+ O(~4)

= n

(
ln n +

VB[n]

T0
+KT0

+
V

T0
− 1

)
+ O(~4) .

Consequently we obtain

S̃[n] =

∫

Rd

n

(
ln n− 1 +

V + VB[n]

T0

+KT0

)
dx+ O(~4) .

We note that, since
∫
n dx is a constant, the term

∫
nKT0

dx is a constant and can
therefore be removed from the definition of the entropy. Therefore, the fluid entropy
at the order ~2, S̃2[n] can be defined according to (5.8).

Furthermore, straightforward computations show that, for nonnegative functions
n, S̃2[n] is a twice Gâteaux differentiable convex functional. Its first and second
derivatives evaluated at n in the direction δn are given by:

DS̃2[n](δn) =

∫

Rd

(
ln n+

V + VB[n]

T0

)
δn dx , (5.35)

and

D2S̃2[n](δn, δn) =

∫

Rd

1

n

(
(δn)2 +

~2

12T0

∣∣∣∣∇δn− δn
∇n
n

∣∣∣∣
2
)
dx . (5.36)

Now, suppose that n is a solution of the QDD2 model (5.5), (5.6). From (5.35)
we deduce that

d

dt
S̃2[n] = DS̃2[n](∂tn) +

∫

Rd

n
∂tV

T0

dx

=
1

T0

∫

Rd

(T0ln n+ V + VB[n]) ∂tn dx+

∫

Rd

n
∂tV

T0

dx . (5.37)

Then, using (5.5) and (5.6), we get:

d

dt
S̃2(n) =

1

T0

∫

Rd

(T0 ln n+ V + VB[n])∇ · (T0 ∇n + n∇(V + VB[n])) dx

+

∫

Rd

n
∂tV

T0

dx .

Formula (5.9) follows after applying Green’s formula.
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5.4 Proof of Theorem 5.2

We want to perform the same kind of manipulations as in the proof of Theorem
5.1, in order to pass from (5.29), (5.30) to (5.11), (5.12). For that purpose, we need
to eliminate A and C from (5.29), (5.30) in favour of n and W (or equivalently, in
favour of T given by (5.13)).

For convenience, we define T0 = −1/(2C). This quantity T0 is the temperature
of the system (not equal to the generalized temperature T defined by (5.13)). From
(5.25), (5.26) and (5.29), we deduce the following relations:

n = n0 + O(h2) , T = T0 + O(h2) ,
∇C
C

= −∇ln T + O(h2) ,

A = ln n− d

2
ln T +

d

2
ln (2π~2) + O(h2) .

Then by straightforward calculations from (5.26) and (5.27), we obtain

n = n0 +
~2

12

n

T

(
∆ln n +

1

2
|∇ln n|2 −∇ln n · ∇ln T

−1

2
∆ln T − (d− 4)

4
|∇ln T |2

)
+ O(h4) , (5.38)

nT = n0 T0 +
~2

12d
n

(
(d− 1)∆ln n+

d

2
|∇ln n|2 − 2∇ln n · ∇ln T

+
d− 4

2
∆ln T − d2 − 2d− 4

4
|∇ln T |2

)
+ O(h4) . (5.39)

Inserting these relations into (5.29) and (5.30) and keeping the leading order terms,
we find (5.11) and (5.12).

6 Conclusion

In this paper, we have proposed new Quantum Energy-Transport and Quantum
Drift-Diffusion models. These models are derived from a diffusion limit of a collisional
Wigner equation. We have used simplified relaxation collision operators but which
retain some important quantum features: quantum entropy decay and relaxation
towards quantum equilibria. The resulting models involve fluxes which are related
in a non-local way to the state variables. Nonetheless, these models are consistant
with quantum entropy decay. An expansion in powers of ~ allows to simplify these
relations. Keeping the leading order quantum correction in the Drift-Diffusion model
amounts to adding the Bohm potential to the classical model. We can prove that
this model is still entropic. The leading order quantum correction to the Energy-
Transport model is unfortunately not so simple. Future developments of this work
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will involve both theoretical investigations (proof of well-posedness, stability, etc.),
and numerical ones.

Appendix

In order to expand the different moments of Exp (A + C|p|2), we need to compute
the moments of M = exp(A+ C|p|2) in terms of n0 =

∫
Rd M

dp
(2π~)d . In the following

formulae, the indices r, s, i, j, k and l are given and δα1α2···αn
is a generalization of

the Kronecker symbol for n indices):
∫

Rd

pi pj M
dp

(2π~)d
= − n0

2C
δij ,

∫

Rd

pr ps pi pj M
dp

(2π~)d
=

n0

4C2
(δrs δij + δri δsj + δrj δsi),

∫

Rd

pi pj |pk|2M
dp

(2π~)d
=

n0

4C2
δij (2δik + 1),

∫

Rd

pr ps pi pj |pk|2M
dp

(2π~)d

= − n0

8C3
(δrs δij + δri δsj + δrj δsi

+2δrsk δij + 2δrs δijk + 2δrik δsj + 2δri δsjk + 2δrjk δsi + 2δrj δsik),

∫

Rd

pr ps pi pj |pk|2 |pl|2M
dp

(2π~)d

=
n0

16C4
(δrs δij + δri δsj + δrj δsi

+2δrs δij δkl + 2δri δsj δkl + 2δrj δsi δkl

+2δrsk δij + 2δrs δijk + 2δrik δsj + 2δri δsjk + 2δrjk δsi + 2δrj δsik

+2δrsl δij + 2δrs δijl + 2δril δsj + 2δri δsjl + 2δrjl δsi + 2δrj δsil

+4δrsk δijl + 4δrsl δijk + 4δrik δsjl + 4δril δsjk + 4δrjk δsil + 4δrjl δsik

+8δrskl δij + 8δrs δijkl + 8δrikl δsj + 8δri δsjkl + 8δrjkl δsi + 8δrj δsikl),

Hence after some summations, for any (r, s, i, j), we deduce
∫

Rd

|p|2M dp

(2π~)d
= − n0

2C
d,

∫

Rd

pi pj |p|2M
dp

(2π~)d
=

n0

4C2
δij (d+ 2),
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∫

Rd

|p|4M dp

(2π~)d
=

n0

4C2
d(d+ 2),

∫

Rd

pr ps pi pj |p|2M
dp

(2π~)d
= − n0

8C3
(δrs δij + δri δsj + δrj δsi) (d+ 4),

∫

Rd

pr ps |p|4M
dp

(2π~)d
= − n0

8C3
δrs (d+ 2)(d+ 4),

∫

Rd

pr ps pi pj |p|4M
dp

(2π~)d
=

n0

16C4
(δrs δij + δri δsj + δrj δsi) (d+ 4)(d+ 6),

∫

Rd

pr ps |p|6M
dp

(2π~)d
=

n0

16C4
δrs (d+ 2)(d+ 4)(d+ 6).
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