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Abstract. The nonlinear Schrödinger equation with general nonlinearity of polynomial growth
and harmonic confining potential is considered. More precisely, the confining potential is strongly
anisotropic; i.e., the trap frequencies in different directions are of different orders of magnitude.
The limit as the ratio of trap frequencies tends to zero is carried out. A concentration of mass
on the ground state of the dominating harmonic oscillator is shown to be propagated, and the
lower-dimensional modulation wave function again satisfies a nonlinear Schrödinger equation. The
main tools of the analysis are energy and Strichartz estimates, as well as two anisotropic Sobolev
inequalities. As an application, the dimension reduction of the three-dimensional Gross–Pitaevskii
equation is discussed, which models the dynamics of Bose–Einstein condensates.
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1. Introduction and main result. The main goal of the present work is
the analysis of the space dimension reduction of the (n + d)-dimensional nonlinear
Schrödinger equation with external confining potential. We are interested in the case
where the external potential is anisotropic and strongly confining in d directions.
This work follows the approach used in [3] for analyzing a dimension reduction (from
dimension 3 to dimension 2) for the Schrödinger–Poisson system and where asymp-
totics for strong partial confinement was introduced. In other words, we deal with
the asymptotic behavior of solutions of the (n+ d)-dimensional Schrödinger equation

iψt = −1

2
Δψ + V ε(x, z)ψ + f(δ|ψ|)ψ ,(1)

ψI(x, z) = ψ(0, x, z) ,(2)

V ε(x, z) =
|x|2
2

+
|z|2
2ε4

, x ∈ Rn , z ∈ Rd ,
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as ε → 0. Here V ε is the trapping harmonic potential and Δ = Δx + Δz is the
Laplacian in Rn+d and ψ satisfies the normalization condition

∫
Rn+d

|ψ|2dxdz = 1 ,(3)

which is preserved by (1). Since the sign of the function f is not specified, we are deal-
ing with both focusing and defocusing nonlinearities. Performing the limit ε → 0 in
this system will enable us to write a reduced model involving a nonlinear Schrödinger
equation in dimension n. In section 4, an application to the dynamics of Bose–Einstein
condensates is presented; we justify mathematically the effective models which can
be found in the physics literature [13]. In this context, as was remarked in [1], the
use of such approximate models significantly reduces the complexity of numerical
simulations.

In order to balance the kinetic and potential energy terms in the z-direction, we
introduce the rescaling z → εz. In order to keep the wavefunction normalized we
have to rescale by ψ → ε−d/2ψε(t, x, z). As we want to balance the nonlinearity with
the terms of order 1, we choose δ = εd/2; thus we consider weak nonlinearities. The
rescaled problem reads

iψε
t = H⊥ψε +

1

ε2
Hψε + f(|ψε|)ψε ,(4)

ψε(t = 0, x, z) = ψI(x, z) ,

with H⊥ = − 1
2Δx + |x|2

2 and H = − 1
2Δz + |z|2

2 , harmonic oscillators in the x- and
z-directions, respectively.

We introduce a new time scale τ = t/ε2, so that we have the fast oscillations in
z corresponding to the fast time scale τ . If we let ε → 0, we formally obtain the
equation

iΨτ = HΨ ,

which we can solve explicitly in terms of the spectral decomposition of H:

Ψ =
∑
k≥0

φke
−iμkτωk(z) .

Here (μk, ωk(z))k≥0 are the eigenvalues and normalized (with respect to L2(Rd))
eigenfunctions of H, and (φk)(k≥0) are coefficients independent of τ and z. The

eigenvalue problem can be solved explicitly with the eigenvalues μk = k + d
2 (see

[18, Theorem 8.4]). The eigenfunctions are products of a Gaussian with Hermite
polynomials, and, in particular, the ground state eigenfunction is given by

ω0(z) =

(
1

π

)d/4

e−
|z|2
2 .

By modulation, thus introducing the slow variables x and t, we would have φk de-
pending on (t, x). This motivates us to expand ψε with respect to the eigenstates of
H:

ψε(t, x, z) =
∑
k≥0

e−iμkt/ε
2

φε
k(t, x)ωk(z) .(5)
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Actually, our aim is to determine and justify approximations of the form

ψε(t, x, z) ≈ ϕ(t, x)e−iμ0t/ε
2

ω0(z) ,(6)

i.e., modulations of the ground state, under an assumption of well-prepared initial
data (see (11) below). A formal analysis indicates that the general case, where the
transport occurs on several modes, is more complicated and might involve coupling
terms between the limiting n-dimensional Schrödinger equations (this is not the case
for the Schrödinger–Poisson system [3], where the nonlinearity is weaker).

The projection Π onto the eigenspace generated by the groundstate ω0(z) is given
by

Πψε(t, x, z) = e−iμ0t/ε
2

φε(t, x)ω0(z)

with

φε(x, t) := eiμ0t/ε
2

∫
Rd

ψε(t, x, z)ω0(z)dz .(7)

It is obvious that the projection has the following properties:

∂tΠ = Π∂t , ΠH⊥ = H⊥Π , ΠH = μ0Π .

By projecting (4) we obtain

iφε
t = H⊥φε + eiμ0t/ε

2

∫
Rd

f(|ψε|)ψεω0dz .(8)

The nonlinearity can be written as

eiμ0t/ε
2

∫
Rd

f(|ψε|)ψεω0dz = f(|φε|)φε + hε

with f(|φ|) =

∫
Rd

f(|φ|ω0)ω
2
0dz

and hε = eiμ0t/ε
2

∫
Rd

[f(|ψε|)ψεω0 − f(|φε|ω0)e
−iμ0t/ε

2

φεω2
0 ]dz .(9)

Then the formal limit of (8) as ε → 0 is the n-dimensional Schrödinger equation

iϕt = H⊥ϕ + f(|ϕ|)ϕ .(10)

When the initial data for the full problem (4) are chosen compatible with the ansatz
(6), i.e.,

ψI(x, z) = ϕI(x)ω0(z) ,(11)

then appropriate initial conditions for the solution of (10) are

ϕ(0, x) = ϕI(x) .(12)

The main result of this work is a justification of the limit problem (10), (12) under
the following assumptions on the initial data and on the nonlinearity.
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Assumption 1. The function ϕI satisfies∫
Rn

(
|∇xϕI(x)|2 + |xϕI(x)|2

)
dx < ∞,

∫
Rn

|ϕI(x)|2dx = 1 .

Assumption 2. The nonlinearity f satisfies

|f(|u|)u− f(|v|)v)| ≤ C(|u|α + |v|α)|u− v| ,

where either f ≥ 0 (defocusing case) and 0 ≤ α < 4
n+d−2 , or 0 ≤ α < min{ 4

n+d−2 ,
4
n}.

Additionally, α ≤ 2
n−2 if n > 2.

Remark. The assumptions are sufficient for proving existence and uniqueness of
local solutions of both the full problem (4), (11) and the limit problem (10), (12)
(see [6, 15, 5]). Note that the property of f required in Assumption 2 carries over to
f . In the repulsive case, global existence is a straightforward consequence of energy
conservation (see section 2). Without sign assumptions on the nonlinearity, the addi-
tional requirement α < 4/n leads to global solvability of the limit problem [15]. Here,
however, it is used for proving ε-independent estimates for the full problem on finite
time intervals.

Theorem 1. Let Assumptions 1 and 2 be satisfied and let ψε and ϕ be the unique
solutions of (4), (11) and (10), (12), respectively. Then for every T < ∞ there exists
a constant cT such that

sup
t∈(0,T )

‖ψε(t, ·, ·)) − e−iμ0t/ε
2

ϕ(t, ·)ω0‖L2(Rn+d) ≤ cT ε .

The rest of the paper is organized as follows. In the following section, conservation
of energy is used to derive uniform estimates of H1-norms of the solution of the
(n+d)-dimensional problem and its ground state contribution. Whereas for repulsive
nonlinearities these results follow directly from the energy conservation, in the general
case the nonlinearity needs to be controlled by an anisotropic generalization of the
Gagliardo–Nirenberg inequality. Also the difference between the full solution and
its projection to the ground state is shown to be small. In section 3, the difference
between the ground state contribution and its formal limit is estimated. The main
tools are Strichartz estimates [6, 10, 17] and an anisotropic Sobolev inequality.

Section 4 deals with an application, the Gross–Pitaevskii equation, which has
a cubic nonlinearity and models the dynamics of Bose–Einstein condensates. In
this case, dimension reduction means obtaining disk-shaped or cigar-shaped conden-
sates. Finally, in the appendix the anisotropic Sobolev embedding and the anisotropic
Gagliardo–Nirenberg inequality are proved.

2. Uniform estimates. In this section we derive some ε-independent estimates
from energy conservation. The energy is defined by

Eε[ψε(t)] :=
〈
H⊥ψε(t), ψε(t)

〉
+

1

ε2
〈Hψε(t), ψε(t)〉 + 2F [ψε(t)] ,

where 〈·, ·〉 denotes the scalar product in L2(Rn+d) and

F [ψ] =

∫
Rn+d

F (|ψ|)dx dz , with F (s) =

∫ s

0

f(σ)σdσ .

Note that the first two terms in the energy are nonnegative quadratic forms controlling
the H1-norms in the x- and z-directions, respectively.
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With Assumption 1, the initial data (11) satisfy Eε[ψI ] < ∞ for fixed ε. From [6]
(Theorem 9.2.5 and Remark 9.2.7) and Assumption 2 we obtain local-in-time existence
for the (n + d)-dimensional problem (4) as well as energy and mass conservation:

Eε[ψε(t)] = Eε[ψI ] , ‖ψε(t)‖2,2 = ‖ψI‖2,2 = ‖ϕI‖2 .(13)

Considering the limit of ε2Eε when ε → 0, we immediately obtain uniform bounds
for the dominant term. The main difficulty consists in finding uniform bounds on〈
H⊥ψε(t), ψε(t)

〉
. Once we have this, we can derive uniform bounds on the H1-norm

of ψε(t).
For the notation of norms we use the following conventions.
Definition 2. Let 0 < T ≤ ∞, 1 ≤ p, q, r ≤ ∞, and u(t, x), v(t, x, z) functions

of t ∈ (0, T ), x ∈ Rn, and z ∈ Rd. Then we define the norms

‖u(t)‖p := ‖u(t, ·)‖Lp(Rn) ,

‖u‖r(p) :=
∥∥∥‖u(·)‖p

∥∥∥
Lr((0,T ))

,

‖v(t)‖q,p :=
∥∥∥‖v(t, ·)‖p

∥∥∥
Lq(Rd)

,

‖v‖r(q,p) :=
∥∥∥‖v(·)‖q,p

∥∥∥
Lr((0,T ))

,

and the corresponding Banach spaces are denoted by Lp
x, L

r
tL

p
x, L

q
zL

p
x, and Lr

tL
q
zL

p
x.

Taking into account the expansion (5) of the (n + d)-dimensional wavefunction
ψε with respect to the orthonormal basis (ωk)k≥0 of eigenfunctions gives

‖ψε(t)‖2
2,2 =

∞∑
k=0

‖φε
k(t)‖2

2,(14)

‖∇xψ
ε(t)‖2

2,2 =

∞∑
k=0

‖∇xφ
ε
k(t)‖2

2.(15)

At first sight, the energy equation seems to be of limited use, since it is dominated
by the contributions in the z-direction. However, with the mass conservation this part
can be written as

〈Hψε(t), ψε(t)〉 =

∞∑
k=0

μk‖φε
k(t)‖2

2

=

∞∑
k=1

(μk − μ0)‖φε
k(t)‖2

2 + μ0‖ϕI‖2
2 ,(16)

and, on the other hand,

〈HψI , ψI〉 = μ0‖ϕI‖2
2 .(17)

By using (16) and (17) we can rewrite the energy conservation as

〈
H⊥ψε(t), ψε(t)

〉
+

1

ε2

∞∑
k=1

(μk − μ0)‖φε
k(t)‖2

2 + 2F [ψε(t)]

=
〈
H⊥ψI , ψI

〉
+ 2F [ψI ] .(18)
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In the case of defocusing nonlinearities all terms in this equation are nonnegative,
and we immediately obtain uniform boundedness of ψε(t) in H1(Rn+d), as well as the
statement that the mass remains concentrated to the ground state as ε → 0. The rest
of this section is devoted to proving the same results (Lemmas 3 and 4) without sign
assumption on the nonlinearity.

By applying Lemma 5 from the appendix with r = α+2, we can control the term
coming from the nonlinearity:

|F [ψε(t)]| ≤ ‖ψε(t)‖2+α
2+α,2+α ≤ c‖∇xψ

ε(t)‖nα/22,2 ‖∇zψ
ε(t)‖dα/22,2 ,(19)

where here and in the following c denotes possibly different ε-independent, positive
constants. Consequently, the energy conservation multiplied by ε2 yields

ε2‖∇xψ
ε(t)‖2

2,2 + ‖∇zψ
ε(t)‖2

2,2 ≤ c + cε2‖∇xψ
ε(t)‖nα/22,2 ‖∇zψ

ε(t)‖dα/22,2 ,

and, from the Young inequality,

ε2‖∇xψ
ε(t)‖2

2,2 + ‖∇zψ
ε(t)‖2

2,2 ≤ c + ε2η‖∇xψ
ε(t)‖2

2,2 + ε2C(η)‖∇zψ
ε(t)‖

2dα
4−nα

2,2 .

Remark. The constraint α < 4
n in Assumption 2 guarantees that the exponent

remains positive.
With the choice η = 1

2 we deduce

‖∇zψ
ε(t)‖2

2,2 ≤ c + ε2c‖∇zψ
ε(t)‖

2dα
4−nα

2,2 .

In the case θ = 2dα
4−nα < 2 we conclude that

‖∇zψ
ε‖∞(2,2) ≤ c.(20)

For θ > 2 we obtain the result by the standard bootstrap argument, since ‖∇zψI‖2,2

is independent of ε (see [4, Lemma 2.9]). Using (19) with (20) in (18), we get

‖∇xψ
ε(t)‖2

2,2 + ‖xψε(t)‖2
2,2 +

1

ε2

∞∑
k=1

(μk − μ0)‖φε
k(t)‖2

2 ≤ c + c‖∇xψ
ε(t)‖nα/22,2 .(21)

Since, by α < 4/n, the exponent in the last term is smaller than 2, uniform bounded-
ness of ‖∇xψ

ε(t)‖2,2 follows.
It is now easy to prove the following two results on uniform boundedness and on

the uniform smallness of the contributions from excited states.
Lemma 3. Let the assumptions of Theorem 1 be satisfied, let ψε be the solution

of (4), (11), let φε be defined by (7), and let ϕ be the solution of (10), (12). Then

ψε ∈ L∞((0,∞); H1(Rn+d)) , φε, ϕ ∈ L∞((0,∞); H1(Rn)) ,

uniformly in ε.
Proof. From (16) and (21) it is immediately clear that 〈H⊥ψε(t), ψε(t)〉 +

〈Hψε(t), ψε(t)〉 is uniformly bounded with respect to ε and t. The observation that
this term dominates the H1(Rn+d)-norm completes the proof of the first statement
of the lemma.

The representation of ψε in terms of the eigenstates shows

〈H⊥ψε(t), ψε(t)〉 ≥ 1

2
(‖∇xφ

ε‖2
2 + ‖xφε‖2

2) ,
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which proves the statement for φε. Finally, the statement for the ε-independent ϕ is
a consequence of the existence theory.

Lemma 4. With the assumptions of the previous lemma,

‖(I − Π)ψε‖∞(p,2) ≤ c ε

holds with an ε-independent constant c and with p ∈ [2, 2d
d−2 ] if d ≥ 3, p ∈ [2,∞) if

d = 2, and p ∈ [2,∞] if d = 1.
Proof. Using (21) we obtain

‖(I − Π)ψε(t)‖2
2,2 =

∞∑
k=1

‖φε
k(t)‖2

2

≤ 1

μ1 − μ0

∞∑
k=1

(μk − μ0)‖φε
k(t)‖2

2 ≤ cε2 ,

i.e., the statement of the lemma with p = 2. On the other hand we estimate

‖∇z(I − Π)ψε(t)‖2
2,2 ≤ 〈H(I − Π)ψε(t), (I − Π)ψε(t)〉 =

∞∑
k=1

μk‖φε
k(t)‖2

2

=

∞∑
k=1

(μk − μ0)‖φε
k(t)‖2

2 + μ0‖(I − Π)ψε(t)‖2
2,2 ≤ cε2 .

The result is now a consequence of the Sobolev embedding H1(Rd) ↪→ Lp(Rd) in
z-space.

3. Proof of the main result. The approximation error in Theorem 1 can be
split into two parts:

‖ψε − ϕω0e
−iμ0t/ε

2‖∞(2,2) ≤ ‖(I − Π)ψε‖∞(2,2) + ‖ω0e
−iμ0t/ε

2

(φε − ϕ)‖∞(2,2)

= ‖(I − Π)ψε‖∞(2,2) + ‖φε − ϕ‖∞(2) .

The first term is taken care of by Lemma 4. The difference χε := φε − ϕ solves the
problem

iχε
t = H⊥χε + gε + hε,(22)

χε(t = 0) = 0 ,

where

gε = f(|φε|)φε − f(|ϕ|)ϕ

and hε given by (9).
For the nonlinear Schrödinger equation (22) with harmonic potential, a local

dispersion result can be established (see [8, 9], [6, Lemma 9.2.4]). This property
allows us to use Strichartz estimates (see [6, Theorem 3.4.1], [5, 12]), and we obtain
the following for any admissible pair (q∗, q) and a bounded time interval T < ∞:

‖χε‖∞(2) ≤ cT (‖gε‖q∗(q) + ‖hε‖q∗(q)) .(23)
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A pair (q, q∗) is admissible iff

2n

n + 2
≤ q ≤ 2 for n ≥ 3 , 1 < q ≤ 2 for n = 2 , 1 ≤ q ≤ 2 for n = 1 ,(24)

q∗ =
4

4 − n(2/q − 1)
.(25)

Note that the definition of admissible pair is not the usual one.
Remark. We need a bounded time interval because the constant depends on the

length of the time interval. For more details, see [6].
Assumption 2 implies the pointwise estimate

|gε| ≤ c(|φε|α + |ϕ|α)|χε| .

Applying the Hölder inequality, we obtain

‖gε(t)‖q ≤ c(‖φε‖α2αq/(2−q) + ‖ϕ‖α2αq/(2−q))‖χε‖2 .

The assumption α ≤ 2/(n− 2) for n ≥ 3 allows us to choose q such that both (24) is

satisfied and H1(Rn) ↪→ L
2αq/(2−q)
x . Therefore we can use Lemma 3 to obtain

‖gε(t)‖q∗(q) ≤ c‖χε‖q∗(2) .(26)

For hε we also employ Assumption 2 to obtain a pointwise estimate:

|hε| ≤ c

∫
Rd

(|ψε|α + |Πψε|α)|(I − Π)ψε|ω0 dz .

Computing the Lq(Rn)-norm and applying the Hölder inequality twice (to the x- and
z-integrals, respectively) lead to

‖hε‖q ≤ c(‖ψε‖ααp′,2αq/(2−q) + ‖φε‖α2αq/(2−q))‖(I − Π)ψε‖p,2 ,

whereby p′ = p
p−1 .

Let us recall all the conditions on p and q:
(i) the assumptions of Lemma 4 for p and condition (24) for q are satisfied;

(ii) the embeddings H1(Rn) ↪→ L
2αq/(2−q)
x and H1(Rn+d) ↪→ Lαp′

z L
2αq/(2−q)
x (see

Lemma 5 in the appendix) hold.
All this is possible since α ≤ 4/(n + d − 2) and α ≤ 2/(n − 2) for n ≥ 3. As a
consequence of Lemmas 3 and 4 we obtain

‖hε‖∞(q) ≤ cε .(27)

With (26) and (27), the Strichartz estimate (23) becomes

‖χε‖∞(2) ≤ cT (‖χε‖q∗(2) + ε) .

Using this estimate on the time interval (0, t) with t ≤ T gives

‖χε(t)‖q
∗

2 ≤ c̃T

(∫ t

0

‖χε(s)‖q
∗

2 ds + εq
∗
)

.

Now, an application of the Gronwall lemma concludes the proof of Theorem 1.
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4. Application: The Gross–Pitaevskii equation. The three-dimensional
nonlinear Schrödinger equation with cubic nonlinearity and an external potential is
called the Gross–Pitaevskii equation. It models the temporal evolution of Bose–
Einstein condensates at temperatures much smaller than the critical condensation
temperature [7, 14, 16]. In dimensional form, the Gross–Pitaevskii equation reads

ih̄ψt = − h̄2

2m
Δψ +

m

2

(
ω2
x|x|2 + ω2

z |z|2
)
ψ + Ng|ψ|2ψ ,(28)

where m is the atomic mass, h̄ is the Planck constant, N is the number of atoms in the
condensate, and ωx, ωz are the trap frequencies in x- and z-directions, respectively.
The parameter g describes the interaction between the atoms in the condensate and
has the form g = h̄2a/m, where a is the scattering length, positive for repulsive
interactions and negative for attractive interactions. We consider the cases n = 1
and n = 2 with d = 3 − n. Characteristic lengths of the condensate in the x- and
z-directions are ax =

√
h̄/(mωx) and az =

√
h̄/(mωz), respectively.

Let us write (28) in dimensionless form. With the scaling

x = axx̃ , z = az z̃ , ψ =
ψ̃√

anxa
3−n
z

, t =
t̃

ωx
,

and skipping the tildes, we obtain

iψt = −1

2
Δxψ +

|x|2
2

ψ +
ωz

ωx

(
−1

2
Δzψ +

|z|2
2

ψ

)
+ N

a

a3−n
z an−2

x

|ψ|2ψ .

In experiments it is observed that in a strongly anisotropic confinement the motion
of particles is quenched in one or two directions. This means that by changing the
shape of the confining potential, lower-dimensional Bose–Einstein condensates are
obtained. They are called disk-shaped or cigar-shaped condensates, respectively. This
is the motivation to consider the Gross–Pitaevskii equation with strongly anisotropic
confining harmonic potential; thus

ε2 :=
ωx

ωz
� 1 .

Furthermore we assume the case of weak coupling, namely,

γ :=
Na

a3−n
z an−2

x

= O(1) .

We then have the equation

iψt = −1

2
Δxψ +

|x|2
2

ψ +
1

ε2

(
−1

2
Δzψ +

|z|2
2

ψ

)
+ γ|ψ|2ψ ,

where γ|ψ|2 = f(|ψ|) with γ positive, if we consider repulsive interactions, e.g., for
23Na and 87Rb, or negative for attractive interactions, e.g., for 7Li. Obviously, As-
sumption 2 on f holds with α = 2.

For repulsive interactions (γ > 0) we have global existence of the solution of the
(n+ d)-dimensional Schrödinger equation if α < 4/(n+ d− 2). Since α = 2 we obtain
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the condition n+d < 4, which includes the physically interesting case n+d = 3. The
limiting lower-dimensional Gross–Pitaevskii equation is

iϕt = H⊥ϕ + γ0|ϕ|2ϕ with γ0 = γ

∫
Rd

ω4
0(z)dz .

On the one hand, if we consider the strong confinement in one direction (d = 1),
we obtain a two-dimensional approximate equation (n = 2). In this case we speak
about a disk-shaped condensate. On the other hand, we consider a strong confinement
in 2 dimensions (d = 2). Accordingly, the approximate equation is one-dimensional
(n = 1) and we call the condensate a cigar-shaped condensate. Theorem 1 can be
applied in both cases.

In the case of attractive interactions, thus for γ < 0, we get stronger constraints
on the dimensions, namely, n = 1 and d < 3. Thus, Theorem 1 can only be applied
for the reduction from three dimensions to one (cigar-shaped condensate).

Appendix. Anisotropic Sobolev inequalities. In this section, we state
anisotropic Sobolev embeddings and a generalized Gagliardo–Nirenberg inequality.
The proof of this lemma, rather straightforward, is skipped. It uses standard Sobolev
embeddings and Gagliardo–Nirenberg inequalities, combined with interpolation es-
timates. We generalize here a result of [2] (see also [11], where a similar Sobolev
embedding is obtained). Recall that in this paper the whole dimension is n + d and
the space variable is written (x, z), where x ∈ Rn and z ∈ Rd.

Lemma 5. Let 2 ≤ p, q ≤ ∞ be such that

n

p(n + d)
+

d

q(n + d)
≥ 1

2
− 1

n + d

(with q < ∞ if d = 2; p < ∞ if n = 2; and strict inequality if n = d = 1). Then

H1(Rn+d) ↪→ Lq
z(R

d;Lp
x(Rn)).

Furthermore, for any r ∈ [2, 2(n+d)
n+d−2 ] we have

‖u‖Lr
x,z

≤ C‖u‖1−(n+d)( 1
2−

1
r )

L2
x,z

‖∇xu‖
n( 1

2−
1
r )

L2
x,z

‖∇zu‖
d( 1

2−
1
r )

L2
x,z

.

REFERENCES

[1] W. Bao, D. Jaksch, and P. A. Markowich, Numerical solution of the Gross–Pitaevskii
equation for Bose–Einstein condensation, J. Comput. Phys., 187 (2003), pp. 318–342.
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