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Abstract. We investigate the time evolution of spin densities in a two-

dimensional electron gas subjected to Rashba spin-orbit coupling on the

basis of the quantum drift-diffusive model derived in Ref. [2]. This

model assumes the electrons to be in a quantum equilibrium state in the

form of a Maxwellian operator. The resulting quantum drift-diffusion

equations for spin-up and spin-down densities are coupled in a non-local

manner via two spin chemical potentials (Lagrange multipliers) and via

off-diagonal elements of the equilibrium spin density and spin current

matrices, respectively. We present two space-time discretizations of the

model which comprise also the Poisson equation in order to account for

electron-electron interactions. In a first step pure time discretization is

applied in order to prove the well-posedness of the two schemes, both of

which are based on a functional formalism to treat the non-local rela-

tions between spin densities. We then use the fully space-time discrete

schemes to simulate the time evolution of a Rashba electron gas in a typ-

ical transistor geometry. Finite difference approximations are first order

in time and second order in space. The discrete functionals introduced

are minimized with the help of a conjugate gradient-based algorithm,

where the Newton method is applied in order to find the respective line

minima.

1. Introduction

The purpose of this paper is the numerical study of the quantum diffusive

model for a spin-orbit system introduced in Ref. [2], with the aim of devel-

oping numerical tools for the investigation of spin-based electronic devices.

Diffusive models offer a simple, yet fairly accurate, description of charge

transport and, for this reason, they have a long-standing tradition in semi-

conductor modeling. Classical drift-diffusion equations for semiconductors

[12] were first derived by van Roosbroeck [17], while Poupaud [16] proved

their rigorous derivation from the Boltzmann equation. Quantum-corrected

drift-diffusion equations were proposed in Refs. [1, 7], and were later derived

by using a quantum version of the maximum entropy principle by Degond,

Méhats and Ringhofer [5, 6]. Finally, fully-quantum diffusive equations, still
1
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based on the quantum maximum entropy principle, were proposed in Refs.

[4, 5]. In view of recent progresses in controlling the electron spin, it is highly

desirable to extend the drift-diffusion description to the spinorial case. The

existing semiclassical drift-diffusion models for spin systems can be classified

into two categories: the two-component models [9] and the spin-polarized or

matrix models [9, 15, 18]. Both models have been used in practice, however

their mathematical derivation is still at the very beginning.

As far as we know, a fully-quantum diffusive model of a spin system has

been first reported in Ref. [2], where a two-component diffusive model for

a 2-dimensional electrons gas with spin-orbit interaction is derived. Such

model, which will be considered from the numerical point of view in the

present work, is based on the quantum maximum entropy principle and

concerns electrons with a spin-orbit Hamiltonian of Rashba type [3]:

H =

(
−~2

2 ∆ + V α~(∂x − i∂y)
−α~(∂x + i∂y) −~2

2 ∆ + V

)
. (1)

Here, (x, y) are the spatial coordinates of the 2-dimensional region where

the electrons are assumed to be confined, α is the Rashba constant and V

is a potential term which may consist of an “external” part (representing

e.g. a gate or an applied potential) and a self-consistent part, accounting for

Coulomb interactions in the mean-field approximation.

The Rashba effect [3, 19] is a spin-orbit interaction undergone by electrons

that are confined in an asymmetric 2-dimensional well (here, perpendicular

to the z direction). Due to this interaction, the spin vector has a preces-

sion around a direction in the plane (x, y), perpendicular to the electron

momentum p = (px, py), the precession speed being α|p|. Since it does not

involve built-in magnetic fields, and hence may be implemented by means

of standard silicon technologies, the Rashba effect is expected to be a key

ingredient for the realization of the so-called S-FET (Spin Field Effect Tran-

sistor) [19], a “spintronic” device in which the information is carried by the

electron spin rather than by the electronic current (as in the usual elec-

tronic devices). This may lead to electronic devices of higher speed and

lower power consumption. The purpose of this work is to contribute to the

understanding of how the Rashba effect can be employed in order to control

the spin transport in these devices.

Let us summarize briefly the derivation of the here investigated quantum

diffusive model. The starting point is the von Neumann equation (i.e. the

Schrödinger equation for mixed states) for the Hamiltonian (1), endowed

with a collisional term of BGK type

i~∂t%(t) = [H, %(t)] +
i

τ
(%eq − %(t)) ,
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where %(t) = (%ij(t)) is the 2 × 2 density operator, representing the time-

dependent mixed state of the system, and τ is the relaxation time. Ac-

cording to the theory developed in Refs. [6, 5] , the local equilibrium state

%eq is chosen as the maximizer of a free energy-like functional, subject to

the constraint of sharing with %(t) the local moments we are interested in,

here the spin-up and spin-down (with respect to the z direction) electron

densities n1, n2 (or, equivalently, the total electronic density n1 + n2 and

the polarization n1 − n2). Then, the maximizer, which has the form of a

Maxwellian operator, contains as many Lagrange multipliers (chemical po-

tentials) as the chosen moments. These multipliers furnish the degrees of

freedom necessary to satisfy the constraint equations. In our case, there-

fore, the local equilibrium state contains two chemical potential, A1 and

A2, which depend on n1 and n2 through the constraint equations. The

rigorous proof of realizability of the quantum Maxwellian associated to a

given density and current has been obtained in Refs. [13, 14] for a scalar

(i.e. non spinorial) Hamiltonian. By assuming τ � 1 and applying the

Chapman-Enskog method, the von Neumann equation leads in the limit to

the “quantum drift-diffusive” system (2) for the unknown densities n1 and

n2. Apart from the chemical potentials A1 and A2, which depend on n1 and

n2 through the constraint, the system also contains some extra moments,

namely the off-diagonal density n21 and currents Jx21, Jy21, which are com-

puted via the equilibrium state and which depend on n1 and n2 as well.

Note that, with respect to the original Hamiltonian (1), we shall work with

a scaled version (see the Hamiltonian (5), which contains also the chemical

potential) in which ε is the scaled Planck constant and α is rescaled as εα.

This is, therefore, a semiclassical scaling with the additional assumption of

small Rashba constant. Of course, the parameter ε is unimportant as long

as we are not interested in the semiclassical behavior but becomes relevant

when we look for a semiclassical expansion of the model for small ε.

In summary, the diffusive equations (2), coupled to Eqs. (4)–(8) which

represent the equilibrium state and the constraints, and associated with the

Poisson equation (3) for the self-consistent potential, constitute the quantum

diffusive model we are going to analyze numerically in this work. Needless

to say, the model (2)–(8) is rather implicit and involved, and requires a very

careful numerical treatment. The aim of the present paper is thus to present

two discrete versions of (2)–(8), suitable for time-resolved simulation of the

spin densities n1 and n2 in a spatially confined, two-dimensional electron

gas. In both schemes the finite-difference approximations of the occurring

derivatives are first order in time and second order in space. At the core of

the numerical study of the present model is the minimization of a functional
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that either maps from IR3P to IR (in the first scheme) or from IR2P to

IR (in the second scheme), where P is the number of points on the space

grid. We present an algorithm that uses a combination of the conjugate

gradient method and the Newton method in order to find the minimum

of the respective functional at each time step. The developed numerical

schemes are used to compute the equilibrium spin densities in a common

transistor geometry which features a spin-dependent potential barrier.

The paper is organized as follows. In Section 2, the continuous model is

introduced and is endowed with suitable initial and boundary conditions. In

Sec. 3 we perform two different time discretizations of the continuous model

and give a formal proof of the well-posedness of each of the two schemes.

Then, in Sec. 4 two fully discrete schemes (i.e. both in time and space) are

introduced and analyzed as well. Finally, Sec. 5 is devoted to numerical

experiments. Details of the proofs and of the discretization matrices are

deferred to the appendices.

2. The quantum spin drift-diffusion model

Let us start with the presentation of the quantum diffusive model introduced

in Ref. [2]. The model describes the evolution of the spin-up and the spin-

down densities n1 and n2, respectively, of a two-dimensional electron gas by

means of the following quantum drift-diffusion equations:

∂tn1 +∇ · (n1∇(A1 − Vs))+

+ α(A1 −A2)Re(Dn21)− 2αRe(n21D(A2 − Vs))−

− 2α

ε
(A1 −A2) Im(Jx21 − iJ

y
21) = 0 ,

∂tn2 +∇ · (n2∇(A2 − Vs))+

+ α(A1 −A2)Re(Dn21) + 2αRe(n21D(A1 − Vs))+

+
2α

ε
(A1 −A2) Im(Jx21 − iJ

y
21) = 0 .

(2)

Here, ∇ = (∂x, ∂y), D = ∂x − i∂y, A1 and A2 denote the two Lagrange

multipliers (A1 − Vs and A2 − Vs being the chemical potentials), Vs stands

for the self-consistent potential arising from the electron-electron interaction

and n21, Jx21 and Jy21 are off-diagonal elements of the spin-density matrix N

and the spin-current tensor J written in (7) and (8), respectively. The

parameter α > 0 denotes the scaled Rashba constant and ε > 0 stands for

the scaled Planck constant (for details regarding the scaling we refer to [2]).

The self-consistent potential Vs is determined by the Poisson equation,

−γ2∆Vs = n1 + n2 , (3)
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where γ > 0 is proportional to the occurring Debye length. The system

(2)-(3) is closed through the fact that the electrons are assumed to be in a

quantum local equilibrium state at all times. This constraint allows one to

relate the Lagrange multipliers A = (A1, A2) to the spin densities n1 and

n2 as well as to the spin-mixing quantities n21 and J21, respectively. More

precisely, if H(A) denotes the system Hamiltonian, the equilibrium state

operator is given by

%eq = exp(−H(A)), (4)

where exp(·) here denotes the operator exponential. In the present case, the

Hamiltonian is given by

H(A) : D(H) ⊂ (L2(Ω))2 → (L2(Ω))2 , D(H) ⊂ (H2(Ω))2 ,

H(A) =

(
− ε2

2 ∆ + Vext,1 +A1 ε2α(∂x − i∂y)
−ε2α(∂x + i∂y) − ε2

2 ∆ + Vext,2 +A2

)
, (5)

where Ω ⊂ IR2 denotes the bounded domain where the electrons are assumed

to be confined. Moreover, we introduced two external, time-independent

potentials Vext,1(x) and Vext,2(x) for the spin-up and the spin-down elec-

trons, respectively. Assuming that H(A) has a pure point spectrum, the

eigenvalues and the eigenvectors of H(A), denoted by λl(A) and ψl(A) =

(ψ1
l (A), ψ2

l (A)), l ∈ IN, respectively, are solutions of

H(A)ψl(A) = λl(A)ψl(A) , (6)

and link the Lagrange multipliers to the spin-density matrix N as well as to

the spin-current matrix J , according to

N =
∑
l

e−λl

 |ψ1
l |2 ψ1

l ψ
2
l

ψ2
l ψ

1
l |ψ2

l |2

 =

(
n1 n21

n21 n2

)
, (7)

J = − iε
2

∑
l

e−λl

 ψ1
l∇ψ

1
l − ψ1

l∇ψ1
l ψ2

l∇ψ
1
l − ψ1

l∇ψ2
l

ψ1
l∇ψ

2
l − ψ2

l∇ψ1
l ψ2

l∇ψ
2
l − ψ2

l∇ψ2
l

 (8)

=

(
J1 J21

J21 J2

)
.

The formulas (7) and (8) are the standard textbook expressions for the

spin-density and the spin-current, respectively, corresponding to the density

operator (4). The system (2)-(3) is now closed through the non-local rela-

tions N(A) and J(A), given by Eqs. (5)-(8). As we do not have a proof

of the invertibility of these relations, in other words whether it is possible

to compute A(n1, n2), the equations (2) can also be viewed as evolution

equations for the Lagrange multipliers A1 and A2 rather than for the spin

densities n1 and n2. Indeed, the two time-discretizations of the system
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(2)-(8), which will be developed in section 3, represent these two possible

viewpoints regarding the evolution equations (2).

Let us now come to the boundary conditions of our problem. The consid-

ered spatial domain Ω ⊂ IR2 is assumed to be bounded with regular bound-

ary ∂Ω. We shall impose Dirichlet boundary conditions for the eigenvectors

ψl,

ψl(x) = 0 for x ∈ ∂Ω ,

hence the current across the domain boundary ∂Ω is zero. As we will briefly

show at the end of this section, the Hamiltonian (5) is not hermitian in

(L2(Ω))2 when imposing Neumann conditions on the wavefunctions ψ ∈
(H2(Ω))2. The study of this problem as well as the implementation of

transparent boundary conditions can be matter for a future work. The self-

consistent potential Vs is supplemented with Dirichlet conditions too,

Vs(x) = 0 for x ∈ ∂Ω .

The Lagrange multipliers A1 and A2 are allowed to vary freely at the bound-

ary, therefore we take Neumann conditions,

∇(A1(x)− Vs(x)) · ν(x) = 0 for x ∈ ∂Ω ,

∇(A2(x)− Vs(x)) · ν(x) = 0 for x ∈ ∂Ω .

Here, ν(x) denotes the outward normal to the boundary ∂Ω at x. As far

as initial conditions are concerned, one has two choices depending on the

point of view of the evolution equations (2). Since we do not know whether

or not (7) is invertible, the safe approach is to provide initial data for the

chemical potentials. However, from the viewpoint of device modeling, it is

more appealing to start from initial spin densities. We shall take the latter

approach and assume that n1(0, x) and n2(0, x) are smooth and bounded.

In summary, we have the following quantum spin-drift-diffusion model,

∂tn1 +∇ · (n1∇(A1 − Vs)) + α(A1 −A2)Re(Dn21) (9)

− 2αRe(n21D(A2 − Vs))−
2α

ε
(A1 −A2) Im(Jx21 − iJ

y
21) = 0 ,

∂tn2 +∇ · (n2∇(A2 − Vs)) + α(A1 −A2)Re(Dn21) (10)

+ 2αRe(n21D(A1 − Vs)) +
2α

ε
(A1 −A2) Im(Jx21 − iJ

y
21) = 0 ,

−γ2∆Vs = n1 + n2 , (11)

H(A)ψl(A) = λl(A)ψl(A) , (12)
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N =
∑
l

e−λl(A)

 |ψ1
l (A)|2 ψ1

l (A)ψ2
l (A)

ψ2
l (A)ψ1

l (A) |ψ2
l (A)|2

 , (13)

J21 = − iε
2

∑
l

e−λl(A)
(
ψ1
l (A)∇ψ2

l (A)− ψ2
l (A)∇ψ1

l (A)
)
, (14)

where the Hamiltonian H(A) is given by (5), and supplemented with the

following initial and boundary conditions,

n1(t = 0, x) = n0
1(x) , n2(t = 0, x) = n0

2(x) for x ∈ Ω ,

Vs(x) = 0 for x ∈ ∂Ω ,

ψl(x) = 0 for x ∈ ∂Ω , (15)

∇(A1(x)− Vs(x)) · ν(x) = 0 for x ∈ ∂Ω ,

∇(A2(x)− Vs(x)) · ν(x) = 0 for x ∈ ∂Ω .

Let us finish this section, by remarking that the Hamiltonian (5) is not

hermitian in (L2(Ω))2 when imposing Neumann boundary conditions on the

wave functions ψ ∈ (H2(Ω))2. Indeed, let us consider

(H(A)ψ, χ) =

∫
Ω

(χ1, χ2)

 − ε2

2 ∆ψ1 + (Vext,1 +A1)ψ1 + ε2αDψ2

− ε2

2 ∆ψ2 + (Vext,2 +A2)ψ2 − ε2αDψ1

 dx ,

where (·, ·) denotes here the scalar product in (L2(Ω))2. Specifically, let us

look at the Rashba coupling terms,∫
Ω

(χ1Dψ2 − χ2Dψ1) dx = −
∫

Ω
(ψ2Dχ1 − ψ1Dχ2) dx+

+

∫
∂Ω
χ1ψ2(1,−i) · ν(x) dσ −

∫
∂Ω
χ2ψ1(1,−i) · ν(x) dσ .

(16)

Here, the boundary terms do not vanish when imposing Neumann condi-

tions. However, if we considered the problem in the whole space Ω = IR2,

the boundary terms would vanish and the Hamiltonian would be hermitian.

Considering the problem in the whole IR2 means, from the numerical point

of view, imposing transparent boundary conditions for ψ.

3. Semi-discretization in time

In this section we make a first step towards a full space-time discretization

of the system (9)-(15), by discretizing the time domain. The purpose of

the semi-discretization is two-fold. Firstly, since the space discretization

of the present two-dimensional spin model is quite involved, the functional

formalism which will be applied in this work becomes more transparent in

the semi-discrete case than in the fully discrete case. Secondly, in contrast
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to the continuous case (9)-(15), existence and uniqueness of solutions of

the semi-discrete system can be proven. Two different semi-discretizations

will be presented. The first one was studied in [8] for a scalar quantum

diffusive model (without the Rashba spin-orbit coupling). We shall use

some of the techniques elaborated in [8] and apply them to the present

spin model. The second semi-discrete scheme is an explicit one which relies

heavily on the ability to invert the relation (13). Its benefits lie in the fact

that, when passing to the full discretization, its treatment is far less involved

as compared to the first scheme.

In the subsequent analysis, the identities

(A1 −A2)Dnk21 − 2nk21D(A2) = D(nk21(A1 −A2))− nk21D(A1 +A2) ,

(A1 −A2)Dnk21 + 2nk21D(A1) = D(nk21(A1 −A2)) + nk21D(A1 +A2) ,
(17)

will be helpful.

3.1. A first semi-discrete system. Suppose T > 0 and let us discretize

the temporal interval [0, T ] in the following homogeneous way

tk = k∆t , k ∈ {0, 1, . . . ,K} , ∆t :=
T

K
.

Then, inspired by [8], we choose the following time-discretization of the

continuous problem (9)-(14),

n1(Ak+1)− nk1
∆t

+∇ · (nk1∇(Ak+1
1 − V k+1

s )) + αRe[D(nk21(Ak+1
1 −Ak+1

2 ))]

− αRe[nk21D(Ak+1
1 +Ak+1

2 − 2V k+1
s )] (18)

− 2α

ε
(Ak+1

1 −Ak+1
2 ) Im(J21,k

x − iJ21,k
y ) = 0 ,

n2(Ak+1)− nk2
∆t

+∇ · (nk2∇(Ak+1
2 − V k+1

s )) + αRe[D(nk21(Ak+1
1 −Ak+1

2 ))]

+ αRe[nk21D(Ak+1
1 +Ak+1

2 − 2V k+1
s )] (19)

+
2α

ε
(Ak+1

1 −Ak+1
2 ) Im(J21,k

x − iJ21,k
y ) = 0 ,

−γ2∆V k+1
s = n1(Ak+1) + n2(Ak+1) , (20)

H(Ak+1)ψk+1
l = λk+1

l ψk+1
l , (21)

n1(Ak+1) =
∑
l

e−λ
k+1
l |ψ1,k+1

l |2 , n2(Ak+1) =
∑
l

e−λ
k+1
l |ψ2,k+1

l |2 . (22)

In this scheme one searches for the unknowns (Ak+1, V k+1
s ), given (Nk, Jk21).

The main difficulty concerning the solution of this system are the non-

local relations (21)-(22). We shall thus construct a mapping (A, Vs) ∈
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(H1(Ω, IR))3 7→ F(A, Vs) ∈ IR whose unique minimum (Ak+1, V k+1
s ) is the

solution of system (18)-(22). Once Ak+1 and the eigenvalues λk+1
l respec-

tively eigenvectors ψk+1
l are known, Eqs. (13)-(14) can be used to compute

(Nk+1, Jk+1
21 ) and the process can be repeated. Let us thus introduce the

two functionals

G : (L2(Ω, IR))2 → IR , F : (H1(Ω, IR))3 → IR ,

defined by

G(A) :=
∑
l

e−λl(A) , A ∈ (L2(Ω, IR))2 , (23)

where λl(A) are the eigenvalues of the Hamiltonian (5), and

F(A, Vs) = G(A) + F1(A, Vs) + F2(A, Vs) + F3(A, Vs) + F4(A) , (24)

where

F1(A, Vs) :=
∆t

2

∫
Ω
nk1|∇(A1 − Vs)|2 dx+

∆t

2

∫
Ω
nk2|∇(A2 − Vs)|2 dx , (25)

F2(A, Vs) :=
γ2

2

∫
Ω
|∇Vs|2 dx+ (nk1, A1 − Vs) + (nk2, A2 − Vs) , (26)

F3(A, Vs) := α∆tRe

{∫
Ω
nk21(A1 −A2)D(A1 +A2 − 2Vs) dx

}
, (27)

F4(A) :=
α∆t

ε
Im

{∫
Ω

(A1 −A2)2(J21,k
x − iJ21,k

y ) dx

}
. (28)

The computation of the first and second Gateaux derivative of the func-

tionals (23)-(28) can be found in Appendix B and C, respectively. One can

immediately see that a solution (Ak+1, V k+1
s ) of the semi-discrete system

(18)-(22) satisfies

dF(Ak+1, V k+1
s )(δA, δVs) = 0 , ∀ (δA, δVs) ∈ (H1(Ω, IR))3 ,

and inversely. Thus, it remains to show that F has a unique extremum

(minimum). This can be achieved in two steps, as it is detailed in Appendix

C. First we show that, under suitable assumptions, the functional F is

strictly convex. Then it is sufficient to show that F is coercive to obtain

the existence and uniqueness of the extremum (Ak+1, V k+1
s ), solution of the

system (18)-(22) (see Appendix C).

3.2. A second semi-discrete system. We suggest here an alternative way

to discretize in time the quantum drift-diffusion model (9)-(15). It is based

on the point of view that one advances the spin densities in time, rather

than the chemical potentials. We shall implement an explicit forward Euler
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scheme:

nk+1
1 − nk1

∆t
+∇ · (nk1∇(Ak1 − V k

s )) + αRe{D(nk21(Ak1 −Ak2))} (29)

− αRe(nk21D(Ak1 +Ak2 − 2V k
s ))− 2α

ε
(Ak1 −Ak2) Im(Jx,k21 − iJ

y,k
21 )

= 0 ,

nk+1
2 − nk2

∆t
+∇ · (nk2∇(Ak2 − V k

s )) + αRe{D[nk21(Ak1 −Ak2)]} (30)

+ αRe[nk21D(Ak1 +Ak2 − 2V k
s )] +

2α

ε
(Ak1 −Ak2) Im(Jx,k21 − iJ

y,k
21 )

= 0 ,

−γ2∆V k
s = nk1 + nk2 , (31)

H(Ak)ψkl = λkl ψ
k
l , (32)

N =
∑
l

e−λ
k
l

 |ψ1,k
l |

2 ψ1,k
l ψ2,k

l

ψ2,k
l ψ1,k

l |ψ2,k
l |

2

 , (33)

Jk21 = − iε
2

∑
l

e−λ
k
l

(
ψ1,k
l ∇ψ

2,k
l − ψ

2,k
l ∇ψ

1,k
l

)
. (34)

In this case, given the spin-densities (nk1, n
k
2), one first uses the Poisson

equation (31) to get V k
s , then inverts the relations (32)-(33) in order to

get the chemical potentials (Ak1, A
k
2). Finally one advances in time, using

the drift-diffusion equations (29)-(30) in order to get the new spin densities

(nk+1
1 , nk+1

2 ), and then one repeats the steps. The inversion of the non-

local relation (32)-(33) can be achieved by minimizing the functional Gn :

(L2(Ω, IR))2 → IR, defined by

Gn(A) := G(A) +

∫
Ω
nk1A1 dx+

∫
Ω
nk2A2 dx (35)

Indeed, the first derivative of this functional reads

dGn(A)(δA) =−
∑
l

e−λl(A)

∫
Ω

(
|ψ1
l (A)|2δA1 + |ψ2

l (A)|2δA2

)
dx

+

∫
Ω
nk1δA1 dx+

∫
Ω
nk2δA2 dx ,

(36)

which clearly implies that its zeros are solutions of (32)-(33). As shown in

Appendix B, the functional Gn is strictly convex and coercive, admitting

hence a unique extremum.
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Remark 1. The two semi-discrete systems presented in this section con-

serve the total mass (n1 + n2) because of the particular choice of Dirichlet

boundary conditions for the eigenvectors ψl of the Hamiltonian (5). This

can be obtained by integrating the sum of the semi-discrete drift-diffusion

equations for n1 and n2, Eqs. (18)-(19) or (29)-(30), respectively, over the

domain Ω. The remaining boundary term is of the form∫
∂Ω
n21(A1 −A2)(1,−i) · ν(x) dσ ,

which does not vanish for Neumann boundary conditions. This is in ac-

cordance with the remark at the end of Section 2, where we showed that

Neumann conditions for ψl lead to a non-hermitian Hamiltonian (5) in

(L2(Ω))2.

4. Fully discrete system

This section is devoted to the full discretization of the continuous spin QDD

model (9)-(15). The time discretization was done in the previous section,

now we focus on the space discretization. Let x ∈ Ω = [0, 1]× [0, 1] with the

discretization

xij = ( (j − 1)∆x , (i− 1)∆y ) , j ∈ {1, 2, . . . ,M} , i ∈ {1, 2, . . . , N} ,

∆x :=
1

M − 1
, ∆y :=

1

N − 1
.

For functions f(x) on Ω we write f(xij) = fij . A function f(x) that is

subject to homogenous Dirichlet boundary conditions on ∂Ω satisfies

f1j = fNj = 0 ∀ j ∈ {1, 2, . . . ,M} , fi1 = fiM = 0 ∀ i ∈ {1, 2, . . . , N} .

We introduce the following index transformation,

(i, j) 7→ p ∀ i ∈ {2, . . . , N − 1} , j ∈ {2, . . . ,M − 1} ,

defined by

p = (N − 2)(j − 2) + i− 1 , p = 1, . . . , P , P := (N − 2)(M − 2) .

For discrete functions (fij)
N−1,M−1
i,j=2 in Ω the following vector notation will

be implemented:

f̂ := (fp)
P
p=1 ∈ CP . (37)

The corresponding euclidean scalar product is denoted by

(f̂ , ĝ)P = ∆x∆y
∑
p

fpgp = ∆x∆y

N−1∑
i=2

M−1∑
j=2

fijgij .
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4.1. A first fully discrete system (scheme 1). The discretization ma-

trices D±x , D±y , Dx, Dy, D̃x, D̃y and ∆dir, used in the following, are defined

in Appendix D. In view of the boundary conditions (15), we choose the

following space discretization of the semi-discrete system (18)-(22),

n̂1(Âk+1
1 , Âk+1

2 )− n̂k1
∆t

− 2α

ε
(Âk+1

1 − Âk+1
2 ) ◦ Im(Ĵ21,k

x − iĴ21,k
y ) (38)

− 1

2
(D+

x )T [n̂k1 ◦D+
x (Âk+1

1 − V̂ k+1
s )]− 1

2
(D−x )T [n̂k1 ◦D−x (Âk+1

1 − V̂ k+1
s )]

− 1

2
(D+

y )T [n̂k1 ◦D+
y (Âk+1

1 − V̂ k+1
s )]− 1

2
(D−y )T [n̂k1 ◦D−y (Âk+1

1 − V̂ k+1
s )]

− αRe
{
D̃T
x [n̂k21 ◦ (Âk+1

1 − Âk+1
2 )]

}
+ αRe

{
iD̃T

y [n̂k21 ◦ (Âk+1
1 − Âk+1

2 )]
}

− αRe
{
n̂k21 ◦ [D̃x(Âk+1

1 + Âk+1
2 − 2V̂ k+1

s )]
}

+ αRe
{
in̂k21 ◦ [D̃y(Â

k+1
1 + Âk+1

2 − 2V̂ k+1
s )]

}
= 0 ,

n̂2(Âk+1
1 , Âk+1

2 )− n̂k2
∆t

+
2α

ε
(Âk+1

1 − Âk+1
2 ) ◦ Im(Ĵ21,k

x − iĴ21,k
y ) (39)

− 1

2
(D+

x )T [n̂k2 ◦D+
x (Âk+1

2 − V̂ k+1
s )]− 1

2
(D−x )T [n̂k2 ◦D−x (Âk+1

2 − V̂ k+1
s )]

− 1

2
(D+

y )T [n̂k2 ◦D+
y (Âk+1

2 − V̂ k+1
s )]− 1

2
(D−y )T [n̂k2 ◦D−y (Âk+1

2 − V̂ k+1
s )]

− αRe
{
D̃T
x [n̂k21 ◦ (Âk+1

1 − Âk+1
2 )]

}
+ αRe

{
iD̃T

y [n̂k21 ◦ (Âk+1
1 − Âk+1

2 )]
}

+ αRe
{
n̂k21 ◦ [D̃x(Âk+1

1 + Âk+1
2 − 2V̂ k+1

s )]
}

− αRe
{
in̂k21 ◦ [D̃y(Â

k+1
1 + Âk+1

2 − 2V̂ k+1
s )]

}
= 0 ,

−γ2∆dirV̂
k+1
s = n̂1(Âk+1

1 , Âk+1
2 ) + n̂2(Âk+1

1 , Âk+1
2 ) , (40)

H(Âk+1
1 , Âk+1

2 )

 ψ̂1,k+1
l

ψ̂2,k+1
l

 = λk+1
l

 ψ̂1,k+1
l

ψ̂2,k+1
l

 , (41)
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n̂1(Âk+1
1 , Âk+1

2 ) =
∑
l

e−λ
k+1
l ψ̂1,k+1

l ◦ ψ̂1,k+1
l , (42)

n̂2(Âk+1
1 , Âk+1

2 ) =
∑
l

e−λ
k+1
l ψ̂2,k+1

l ◦ ψ̂2,k+1
l , (43)

n̂k21 =
∑
l

e−λ
k
l ψ̂2,k

l ◦ ψ̂
1,k
l , (44)

Ĵx,k21 = − iε
2

∑
l

e−λ
k
l

[
Dx(ψ̂2,k

l ) ◦ ψ̂1,k
l − ψ̂

2,k
l ◦Dx(ψ̂1,k

l )
]
, (45)

Ĵy,k21 = − iε
2

∑
l

e−λ
k
l

[
Dy(ψ̂

2,k
l ) ◦ ψ̂1,k

l − ψ̂
2,k
l ◦Dy(ψ̂

1,k
l )
]
. (46)

Here, the operator “◦” symbolizes the component by component multiplica-

tion of two vectors in CP and the Hamiltonian H(Âk+1) is given by

H(Âk+1
1 , Âk+1

2 ) =

=

 − ε2

2 ∆dir + dg(V̂ext,1 + Âk+1
1 ) ε2α(Dx − iDy)

−ε2α(Dx + iDy) − ε2

2 ∆dir + dg(V̂ext,2 + Âk+1
2 )

 ,

(47)

where dg(f̂) stands for a diagonal P×P matrix where the diagonal elements

are the components fp of f̂ . The scheme (38)-(46) is consistent with the

continuous model (9)-(15). It is of first order in time and of second order

in space. Due to its rather implicit nature, the scheme (38)-(46) is not

subjected to any stability condition. The solution (Âk+1
1 , Âk+1

2 , V̂ k+1
s ) of

the system (38)-(46) is the minimizer of the following discrete functional

F̂(Â1, Â2, V̂s) : IR3P → IR,

F̂(Â1, Â2, V̂s) : = Ĝ(Â1, Â2) + F̂1(Â1, Â2, V̂s)+

+ F̂2(Â1, Â2, V̂s) + F̂3(Â1, Â2, V̂s) + F̂4(Â1, Â2) ,
(48)

where

Ĝ(Â1, Â2) :=
2P∑
l=1

e−λl(Â1,Â2) , (49)
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F̂1(Â1, Â2, V̂s) :=
∆t

4

[
(n̂k1 ◦D+

x (Â1 − V̂s), D+
x (Â1 − V̂s))P

+(n̂k1 ◦D−x (Â1 − V̂s), D−x (Â1 − V̂s))P + (n̂k1 ◦D+
y (Â1 − V̂s), D+

y (Â1 − V̂s))P

+(n̂k1 ◦D−y (Â1 − V̂s), D−y (Â1 − V̂s))P + (n̂k2 ◦D+
x (Â2 − V̂s), D+

x (Â2 − V̂s))P

+(n̂k2 ◦D−x (Â2 − V̂s), D−x (Â2 − V̂s))P + (n̂k2 ◦D+
y (Â2 − V̂s), D+

y (Â2 − V̂s))P

+(n̂k2 ◦D−y (Â2 − V̂s), D−y (Â2 − V̂s))P
]
, (50)

F̂2(Â1, Â2, V̂s) : = (n̂k1, Â1 − V̂s)P + (n̂k2, Â2 − V̂s)P

+
γ2

2

[
(Db

xV̂s, D
b
xV̂s)P + (Db

yV̂s, D
b
yV̂s)P

]
+

∆y

∆x

N∑
i=1

V 2
s,iM +

∆x

∆y

M∑
j=1

V 2
s,Nj

(51)

F̂3(Â1, Â2, V̂s) := α∆tRe
[(
n̂k21 ◦ (Â1 − Â2), D̃x(Â1 + Â2 − 2V̂s)

)
P

− i
(
n̂k21 ◦ (Â1 − Â2), D̃y(Â1 + Â2 − 2V̂s)

)
P

] (52)

F̂4(Â1, Â2) :=
α∆t

ε
Im

[(
(Â1 − Â2) ◦ (Â1 − Â2), Ĵ21,k

x − iĴ21,k
y

)
P

]
, (53)

and the further discretization matrices Db
x and Db

y are also defined in Ap-

pendix D. Using the relation

−(V̂s,∆dirV̂s)P = (Db
xV̂s, D

b
xV̂s)P + (Db

yV̂s, D
b
yV̂s)P

+
∆y

∆x

N∑
i=1

V 2
s,iM +

∆x

∆y

M∑
j=1

V 2
s,Nj ,

(54)

it can be readily verified that a solution (Âk+1
1 , Âk+1

2 , V̂ k+1
s ) of (38)-(46)

satisfies

dF̂(Âk+1
1 , Âk+1

2 , V̂ k+1
s )(δÂ, δV̂s) = 0 ∀ (δÂ1, δÂ2, δV̂s) ∈ IR3P .

4.2. A second fully discrete system (scheme 2). We chose the follow-

ing space discretization of the forward Euler scheme (29)-(34):



NUMERICAL STUDY OF A SPIN QDD MODEL 15

n̂k+1
1 − n̂k1

∆t
− 2α

ε
(Âk1 − Âk2) ◦ Im(Ĵ21,k

x − iĴ21,k
y )

− 1

2
(D+

x )T [n̂k1 ◦D+
x (Âk1 − V̂ k

s )]− 1

2
(D−x )T [n̂k1 ◦D−x (Âk1 − V̂ k

s )]

− 1

2
(D+

y )T [n̂k1 ◦D+
y (Âk1 − V̂ k

s )]− 1

2
(D−y )T [n̂k1 ◦D−y (Âk1 − V̂ k

s )]

− αRe
{
D̃T
x [n̂k21 ◦ (Âk1 − Âk2)]

}
+ αRe

{
iD̃T

y [n̂k21 ◦ (Âk1 − Âk2)]
}

− αRe
{
n̂k21 ◦ [D̃x(Âk1 + Âk2 − 2V̂ k

s )]
}

+ αRe
{
in̂k21 ◦ [D̃y(Â

k
1 + Âk2 − 2V̂ k

s )]
}

= 0 , (55)

n̂k+1
2 − n̂k2

∆t
+

2α

ε
(Âk1 − Âk2) ◦ Im(Ĵ21,k

x − iĴ21,k
y )

− 1

2
(D+

x )T [n̂k2 ◦D+
x (Âk2 − V̂ k

s )]− 1

2
(D−x )T [n̂k2 ◦D−x (Âk2 − V̂ k

s )]

− 1

2
(D+

y )T [n̂k2 ◦D+
y (Âk2 − V̂ k

s )]− 1

2
(D−y )T [n̂k2 ◦D−y (Âk2 − V̂ k

s )]

− αRe
{
D̃T
x [n̂k21 ◦ (Âk1 − Âk2)]

}
+ αRe

{
iD̃T

y [n̂k21 ◦ (Âk1 − Âk2)]
}

+ αRe
{
n̂k21 ◦ [D̃x(Âk1 + Âk2 − 2V̂ k

s )]
}
− αRe

{
in̂k21 ◦ [D̃y(Â

k
1 + Âk2 − 2V̂ k

s )]
}

= 0 , (56)

−γ2∆dirV̂
k
s = n̂k1 + n̂k2 , (57)

H(Âk1, Â
k
2)

 ψ̂1,k
l

ψ̂2,k
l

 = λkl

 ψ̂1,k
l

ψ̂2,k
l

 , (58)

n̂k1 =
∑
l

e−λ
k
l ψ̂1,k

l ◦ ψ̂
1,k
l , n̂k2 =

∑
l

e−λ
k
l ψ̂2,k

l ◦ ψ̂
2,k
l , (59)

n̂k21 =
∑
l

e−λ
k
l ψ̂2,k

l ◦ ψ̂
1,k
l , (60)
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Ĵx,k21 = − iε
2

∑
l

e−λ
k
l

[
Dx(ψ̂2,k

l ) ◦ ψ̂1,k
l − ψ̂

2,k
l ◦Dx(ψ̂1,k

l )
]
, (61)

Ĵy,k21 = − iε
2

∑
l

e−λ
k
l

[
Dy(ψ̂

2,k
l ) ◦ ψ̂1,k

l − ψ̂
2,k
l ◦Dy(ψ̂

1,k
l )
]
. (62)

Here, the Hamiltonian H is the same discrete Hamiltonian (47) as in the first

fully discrete scheme. Clearly, the scheme (55)-(62) is consistent with the

continuous model (9)-(15). It is of first order in time and of second order in

space. A drawback of the explicit nature of the forward Euler scheme (29)-

(34) is that its full discretization is not unconditionally stable, as compared

to the implicit scheme presented in the previous subsection. Rather, the

space-time grid must be chosen in such a way that a CFL condition is

fulfilled.

The solution of this scheme requires the inversion of the non-local relation

(58)-(59) at each time step. For this let us define the discrete version Ĝn :

IR2P → IR of (35),

Ĝn(Â1, Â2) := Ĝ(Â1, Â2) + (n̂k1, Â1)P + (n̂k2, Â2)P . (63)

It can be easily verified that the first derivative of this functional is given by

dĜn(Â1, Â2)(δÂ1, δÂ2) =

(
−
∑
l

e−λ
k
l ψ̂1,k

l ◦ ψ̂
1,k
l + n̂k1, δÂ1

)
P

+

(
−
∑
l

e−λ
k
l ψ̂2,k

l ◦ ψ̂
2,k
l + n̂k2, δÂ2

)
P

,

(64)

whose zeros are hence the solutions of (58)-(59).

Remark 2. It should be noted that numerical tests performed in Sec. 5

convinced us that the forward Euler scheme presented in this subsection was

better suited for a numerical solution of the spin QDD model than a Lax-

Friedrichs scheme. In fact, the latter was found to be unstable in the regarded

test cases. This is quite surprising since the Eqs. (29)-(30) contain a term

of conservative form ∇ · (nj∇Aj). Therefore, appropriate discretizations

for conservation laws [11], such as Lax-Friedrichs, should be used to ensure

numerical stability. Moreover, the forward Euler scheme is unconditionally

unstable for (linear) equations in conservative form. An explanation for the

observed stability can be given by regarding the Lagrange multipliers Aεj =

Aεj(n1, n2) in the semi-classical limit ε→ 0. As described in [2], the correct

semi classical expansion reads

Aεj(n1, n2) = − log nj +
ε2

6

∆
√
nj

√
nj

+O(ε2α2) . (65)
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Therefore, in the limit ε→ 0, the conservative term reads

∇ · (nεj∇Aεj)
ε→0−−−→ −∇ · (nj∇ log nj) . (66)

Hence, for small ε, the Eqs. (29)-(30) resemble a heat equation or a drift-

diffusion equation, respectively, where the diffusive term is written in the

non-standard form (66). In this case the forward Euler scheme is stable

with respect to a CFL condition of the form ∆t ≤ d∆x2 for some constant

d.

4.3. Initialization of scheme 1. As was briefly mentioned in Sec. 2, a

natural way to initialize the system (38)-(46) would be to start from given

initial chemical potentials Â0
1 and Â0

2, compute the corresponding spin- and

current densities and subsequently begin the iteration. However, from an

experimental point of view it is more appealing to start from the initial

spin densities n̂0
1 and n̂0

2. The problem in the latter approach is the lack of

information about the initial spin-mixing quantities n̂0
21, Ĵx,021 and Ĵy,021 , which

are not directly related to the spin densities. At t = t0 it is thus necessary

to do a half step of scheme 2, which means to minimize the functional (63)

in order to obtain the chemical potentials corresponding to the initial spin

densities n̂0
1 and n̂0

2. One can then proceed according to scheme 1.

5. Numerical results

This section deals with the numerical study of the two fully discrete schemes

which were introduced in the previous section. The developed algorithms

were implemented in the Fortran 90 language. Eigenvalue problems were

solved using the routine ’zheev.f90’ from the Lapack library. The solution

of scheme 1, equations (38)-(46), was achieved by minimizing the discrete

functional (48) at each time step tk, k > 0. At t0 the system was initialized

as detailed in Subsec. 4.3. Each minimization problem was solved by a

conjugate gradient method in the parameter space IR3P (or IR2P for scheme

2, respectively). We denote vectors in the discrete space by capital letters

X ∈ IR3P , X = (Â1, Â2, V̂s), and by ∇X we denote the gradient in the

discrete space. In what follows the dot ’·’ stands for the usual euclidean

scalar product in IR3P . In order to find the line minimum of ∇XF̂ · Yn,

where Yn denotes the search direction (|Yn| = 1) during the n-th step of the

conjugate gradient scheme, a Newton method was employed. The derivative

of ∇XF̂ · Yn in the direction Yn was computed numerically with a forward

discretization and the small step size εNT = 10−3,

(∇XF̂(X) · Yn)′ ≈ ∇XF̂(X + εNTYn) · Yn −∇XF̂(X) · Yn
εNT

.
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The same method was applied to the functional Ĝn in scheme 2. The New-

ton method was considered converged when |∇XF̂(X) · Yn| < 10−10. We

established two convergence criteria for the conjugate gradient method. On

the one hand, we demanded that the total mass was conserved up to a

factor 10−4. On the other hand, using the notations X = (xi)
3P
i=1 and

∇XF̂ = (∂xiF̂)3P
i=1, we demanded that

max
i
|∂xiF̂ | < 10−3 .

Again, the same criteria were applied for the functional Ĝn in scheme 2. The

time evolution was assumed to have converged if |nk+1
1(2) − n

k
1(2)|/∆t was less

than 10−1 at each grid point.

Our aim is to test the developed numerical schemes in a typical transistor

geometry, depicted in Fig. 1. We expect to obtain equilibrium charge- and

spin-distributions for such a device. The source electrode of the transistor

is located in the upper left corner of the domain, being held at a fixed

potential-value Vext,S = 0. The drain electrode is opposite to the source in

the upper right corner with a fixed potential-value Vext,D = −2.0. The gate

electrode, held at the fixed potential Vext,G = −3.0, is centered at x = 0.5

at the upper boundary of the domain. The values chosen for the electrode

potentials are typical ones for a transistor in the on-state (current flowing

between the source and the drain).

The transistor environment described above manifests itself in the two

spin-up respectively spin-down external potentials Vext,1 and Vext,2. Prior to

starting our simulations, these potentials were computed from the Laplace

equation using a Gauss-Seidel scheme, where the fixed values Vext,S , Vext,D,

Vext,G entered as Dirichlet boundary conditions (Neumann conditions were

used at non-electrode portions of the domain boundary). On top of that we

added a potential barrier of height 2.0 and thickness 0.1, which is centered at

x = 0.5, and which exists only for spin-up electrons (index ’1’). The barrier

was thus added to Vext,1 only. The potentials Vext,1 + Vs and Vext,2 + Vs at

the starting time t0 are depicted in Fig. 1.

Once the starting potentials Vext,1 and Vext,2 have been determined, we

are interested in the evolution of given initial spin distributions n0
1 and n0

2

in the prescribed transistor environment. For the initial spin densities we

choose two Gaussians centered at (x, y) = (0.5, 0.5),

n0
1(x, y) =

1

0.12π
(1.0 + pol) exp

(
−(x− 0.5)2

0.06
− (y − 0.5)2

0.06

)
,

n0
2(x, y) =

1

0.12π
(1.0− pol) exp

(
−(x− 0.5)2

0.06
− (y − 0.5)2

0.06

)
.

(67)
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Figure 1. Diagram of the transistor geometry used in the

simulations and the initial potentials V1 = Vext,1 + Vs and

V2 = Vext,2 + Vs in that geometry at t = t0.

Here, pol denotes the parameter of the initial spin polarization which was

set to pol = 0.5. The initial data for n1 and n2 were discretized according

to the conventions at the beginning of section 4. The initial total mass of

the system was 1.0. The parameters of the space-discretization (for scheme

1 and for scheme 2) were chosen as

N = 21 , M = 21 , ∆x = 0.05 , ∆y = 0.05 .

Employing the initial conditions (67), the numerical solution of scheme 1

and scheme 2, respectively, was carried out for values

α = 0.1 , ε = 0.1 , (68)

of the scaled Rashba constant α and the semiclassical parameter ε, respec-

tively. The respective time steps were

scheme 1 : ∆t = 1.0× 10−2 , scheme 2 : ∆t = 0.5× 10−4 . (69)

We note that in scheme 2 the CFL condition imposed a rather small incre-

ment on the time discretization.



20 L. BARLETTI, F. MÉHATS, C. NEGULESCU, AND S. POSSANNER

(a) Scheme 1: ∆t = 1.0 × 10−2.

(b) Scheme 2: ∆t = 0.5 × 10−4.

Figure 2. Time evolution of the electron density n = n1+n2

in the transistor geometry depicted in Fig. 1.
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(a) Scheme 1: ∆t = 1.0 × 10−2.

(b) Scheme 2: ∆t = 0.5 × 10−4.

Figure 3. Time evolution of the spin polarization npol =

n1 − n2 in the transistor geometry depicted in Fig. 1.
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(a) Scheme 1: ∆t = 1.0 × 10−2.

(b) Scheme 2: ∆t = 0.5 × 10−4.

Figure 4. Time evolution of the chemical potential A1 in

the transistor geometry depicted in Fig. 1.
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(a) Scheme 1: ∆t = 1.0 × 10−2.

(b) Scheme 2: ∆t = 0.5 × 10−4.

Figure 5. Time evolution of the chemical potential A2 in

the transistor geometry depicted in Fig. 1.
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The simulated time evolution of the spin density n = n1 + n2, the spin

polarization npol = n1 − n2, the chemical potential A1 and the chemical

potential A2 are depicted in Figs. 2-5 (all plotted data was interpolated

to a grid of 128 × 128 points using the Matlab routine “interp2.m”). In

each of these Figures the results obtained from scheme 1 are compared with

those obtained from scheme 2 during a time span of 8.0 × 10−2. Let us

briefly explain what is observed, starting with the evolution of the electron

density n = n1 + n2 depicted in Fig. 2. At k = 0 one identifies the initial

Gaussian, given by (67), which, as time evolves, is gradually split into two

parts because of the potential barrier located at the center of the transistor,

c.f. Figure 1. As one approaches the steady-state (at k = 8 for scheme 1 and

k = 1600 for scheme 2) the electron density has its maximum in the vicinity

of the gate and the drain electrode, which is the region where the electron

potential Vext + Vs has its lowest value. The region where the potential

barrier is located shows a reduced electron density. This can be attributed to

the positive barrier height “seen” by spin-up electrons, which impedes these

electrons from entering (crossing) this region. Spin-down electrons are much

less affected by the barrier, which becomes more transparent when regarding

Figs. 4 and 5 for the respective chemical potentials. A first observation is

that gradients of A1 and of A2 are gradually reduced when approaching the

steady-state. Moreover, one clearly observes the barrier in the Lagrange

multipier A1, while in A2 it is completely absent. Since each Lagrange

multiplier depends non-locally on both spin densities, Aj = Aj(n1, n2), one

would expect the barrier for the spin-up electrons to have some influence on

A2, which is not observed in Fig. 5. The reason for this is the smallness

of the parameters ε and α, c.f. Eq. (68). According to the semi classical

expansion (65), for small ε and α the Lagrange multiplier Aj is close to a

function of nj alone.

We now turn to an interpretation of the obtained spin polarization npol,

depicted in Fig. 3. A pattern similar to the one for the spin density evolves;

however, npol becomes negative in the region where the potential barrier

is located. This is again due to the positive barrier height, which leads to

n2 > n1 in the respective region.

As far as the performance of the two schemes is concerned, the explicit

scheme 2 is to be preferred over the implicit scheme 1. The former has the

advantage that the functional (63), which is to be minimized at each time

step, is defined on the parameter space IR2P , as compared to the parameter

space IR3P on which the functional (48) of scheme 1 is defined. Considering

that, for each search direction in the conjugate gradient method, one has to
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solve around 2-10 eigenvalue problems (by then the Newton method has usu-

ally converged), a lower-dimensional parameter space significantly reduces

the computational cost. However, the CFL condition on the forward Euler

scheme prevents a resolution of the model that is considerably faster than

with scheme 1, c.f. the difference in the time steps (69). Both schemes are

of order 1 in time. For comparable computational cost, scheme 2 is thus

preferred over scheme 1 because of the better accuracy, which explains the

(small) differences observed in the Figs. 2-5.

6. Conclusion

In this work have carried out a numerical investigation of the quantum

diffusive spin model introduced in Ref. [2] and summarized in equations (9)-

(15). We formally proved (under suitable assumptions) the existence and

uniqueness of a solution of two time discrete versions of this model, on the

basis of a functional argument. Furthermore, finite difference approxima-

tions of space derivatives resulted in two fully discrete schemes which were

later applied to simulate the time evolution of a Rashba electron gas con-

fined in a bounded domain and under the influence of a prescribed external

potential. The first scheme is implicit and advances in time the spin chemi-

cal potentials, whereas the second scheme is forward Euler and advances in

time the spin-up and spin-down densities, respectively. The second scheme

is subjected to a CFL stability condition, which results in the use of a con-

siderably smaller time step as compared to the implicit scheme. Our results

show that the quantum drift-diffusion model considered here, can be applied

for the numerical study of spin-polarized effects due to Rashba spin-orbit

coupling and, thus, appears to benefit the design of novel spintronics appli-

cations.

Appendix A. Perturbed eigenvalue problem

This section is devoted to the computation of the derivatives dλl(A)(δA)

and dψl(A)(δA) of the eigenvalues and eigenfunctions, respectively, of the

Hamiltonian (5), when a small perturbation δA of the chemical potential A

is applied. Let us define

δH =

 δA1 0

0 δA2

 , (70)

and start from

(H + δH)(ψl + dψl) = (λl + dλl)(ψl + dψl) (71)
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where H denotes the Hamiltonian (5). Using Hψl = λlψl one obtains, up

to first order in the variations,

Hdψl + δHψl = λldψl + dλlψl . (72)

Taking now the scalar product with ψk and using the orthonormalitiy of the

eigenfunctions,

(ψk, ψl)L2 =

∫
Ω

(ψ1
kψ

1
l + ψ2

kψ
2
l ) dx = δkl , (73)

one obtains

(ψk, Hdψl)L2 + (ψk, δHψl)L2 = λl(ψk,dψl)L2 + dλlδkl . (74)

Since H is hermitian we have

(ψk, Hdψl)L2 = (Hψk, dψl)L2 = λk(ψk, dψl)L2 , (75)

and (74) can be written as

(ψk, δHψl)L2 = (λl − λk)(ψk,dψl)L2 + dλlδkl . (76)

For l = k we obtain

dλl(A)(δA) = (ψl, δHψl)L2 =

∫
Ω

(
|ψ1
l (A)|2δA1 + |ψ2

l (A)|2δA2

)
dx , (77)

and for l 6= k, assuming that the spectrum of H is non-degenerate, i.e.

λl 6= λk, for l 6= k, one obtains

(ψk, dψl)L2 =
(ψk, δHψl)L2

λl − λk
. (78)

Since (78) is the projection of dψl on the k-th basis vector of the eigenbasis

of H we may write

dψl(A)(δA) =
∑
k 6=l

ψk
λl − λk

(ψk, δHψl)L2 = (79)

=
∑
k 6=l

ψk(A)

λl(A)− λk(A)

∫
Ω

(
ψ1
k(A)ψ1

l (A)δA1 + ψ2
k(A)ψ2

l (A)δA2

)
dx .

Appendix B. The functionals G and Gn

This appendix is concerned with the study of the functionals G : (H1(Ω, IR))2 →
IR, introduced in (23), and Gn : (H1(Ω, IR))2 → IR, introduced in (35). The

map G is Gateaux-derivable and its first and second derivatives in the direc-

tion δA = (δA1, δA2), read

dG(A)(δA) = −
∑
l

e−λl(A)

∫
Ω

(
|ψ1
l (A)|2δA1 + |ψ2

l (A)|2δA2

)
dx ,

d2G(A)(δA) = −
∑
l,k

e−λl − e−λk
λl − λk

(∫
Ω
ψ1
kψ

1
l δA1 dx+

∫
Ω
ψ2
kψ

2
l δA2 dx

)2

.
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Let us present the detailed computation of the second derivative. We have

d2G(A)(δA) =− 2
∑
l

e−λl
∫

Ω
Re
(
ψ1
l dψ

1
l δA1 + ψ2

l dψ
2
l δA2

)
dx

+
∑
l

e−λldλl

∫
Ω

(
|ψ1
l |2δA1 + |ψ2

l |2δA2

)
dx .

(80)

Let us define the following integrals,

Ikl1 :=

∫
Ω
ψ1
kψ

1
l δA1 dx Ikl2 :=

∫
Ω
ψ2
kψ

2
l δA2 dx . (81)

Remark that from (77) one deduces

dλl = I ll1 + I ll2 . (82)

Thus, the second line in (80) can be written as∑
l

e−λl
(
I ll1 + I ll2

)2
. (83)

Moreover, from (79) one obtains

dψ1
l =

∑
k 6=l

ψ1
k

λl − λk

(
Ikl1 + Ikl2

)
,

dψ2
l =

∑
k 6=l

ψ2
k

λl − λk

(
Ikl1 + Ikl2

)
,

(84)

and therefore we have∫
Ω

(
ψ1
l dψ

1
l δA1 + ψ2

l dψ
2
l δA2

)
dx =

∑
k 6=l

1

λl − λk

(
Ikl1 + Ikl2

)2
. (85)

The right-hand-side of the first line in (80) can now be written as

−2
∑
l

∑
k 6=l

e−λl

λl − λk

(
Ikl1 + Ikl2

)2
= −

∑
l,k,l 6=k

e−λl − e−λk
λl − λk

(
Ikl1 + Ikl2

)2
. (86)

Adding (83) and (86) together and making the convention

l = k :
e−λl − e−λk
λl − λk

= −e−λl , (87)

the second derivative of G(A) becomes

d2G(A)(δA) = −
∑
l,k

e−λl − e−λk
λl − λk

(
Ikl1 + Ikl2

)2
. (88)

As a consequence, the map G is strictly convex. As far as Gn is concerned,

we formally obtain

Gn(A) =
∑
l

e−λl(A) +

∫
Ω
nk1A1 dx+

∫
Ω
nk2A2 dx

≥ e−λ1(A) +

∫
Ω
nk1A1 dx+

∫
Ω
nk2A2 dx −−−−−−−−−−−−−→

||A1||L2+||A2||L2→∞
∞ ,

(89)
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where λ1(A) stands for the smallest eigenvalue of the Hamiltonian H(A),

λ1(A) = min
φ∈(H1(Ω))2

(H(A)φ, φ) , ||φ||(L2(Ω))2 = 1 . (90)

We are then let to the conclusion that Gn is strictly convex (as its second

derivatives coincide with those of G) and even coercive.

Appendix C. The functional F

In this appendix we are concerned with the convexity and coercivity of

the functional F , given by (25)-(28), in order to show that under some

assumptions F admits a unique minimum. The first and second Gateaux

derivative of the functionals (25)-(28) are given by

dF1(A, Vs)(δA, δVs) =−∆t

∫
Ω
∇ · (nk1∇(A1 − Vs))(δA1 − δVs) dx

−∆t

∫
Ω
∇ · (nk2∇(A2 − Vs))(δA2 − δVs) dx ,

d2F1(A, Vs)(δA, δVs) =−∆t

∫
Ω
∇ · [nk1∇(δA1 − δVs)](δA1 − δVs) dx

−∆t

∫
Ω
∇ · [nk2∇(δA2 − δVs)](δA2 − δVs) dx

=∆t

∫
Ω
nk1|∇(δA1 − δVs)|2 dx+ ∆t

∫
Ω
nk2|∇(δA2 − δVs)|2 dx ,

dF2(A, Vs)(δA, δVs) =− γ2

∫
Ω

∆VsδVs dx−
∫

Ω
(nk1 + nk2)δVs dx

+

∫
Ω
nk1δA1 dx+

∫
Ω
nk2δA2 dx ,

d2F2(A, Vs)(δA, δVs) = −γ2

∫
Ω

(∆δVs)δVs dx = γ2

∫
Ω
|∇δVs|2 dx ,

dF3(A, Vs)(δA, δVs) =− α∆tRe

{∫
Ω
D[nk21(A1 −A2)](δA1 + δA2 − 2δVs) dx

}
+ α∆tRe

{∫
Ω
nk21D(A1 +A2 − 2Vs)(δA1 − δA2) dx

}
,

d2F3(A, Vs)(δA, δVs) = 2α∆tRe

{∫
Ω
nk21D(δA1 + δA2 − 2δVs)(δA1 − δA2) dx

}
,

dF4(A)(δA) =
2α∆t

ε
Im

{∫
Ω

(A1 −A2)(δA1 − δA2)(J21,k
x − iJ21,k

y ) dx

}
,

d2F4(A)(δA) =
2α∆t

ε
Im

{∫
Ω

(δA1 − δA2)2(J21,k
x − iJ21,k

y ) dx

}
.
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To show that F is strictly convex, it is sufficient to show that

d2F(A, Vs)(δA, δVs) ≥ 0 , ∀δA, δVs .

One can see immediatly that the terms corresponding to G, F1 and F2 are

positive. Nevertheless, nothing can be said about the sign of the terms

corresponding to F3 and F4. Assuming on the other hand that ε is a small

parameter, which is a physical hypothesis, one can incorporate these latter

terms in the former ones. Inspired by a formal proof in [2], we may assume

that

nk21 = O(ε2) , Im(J21,k
x − iJ21,k

y ) = 2cεα
e−A

k
1 − e−Ak

2

Ak2 −Ak1
+O(ε3) ,

for some constant c > 0. We remark, then, that the dominant term in d2F4,

4cα2∆t

{∫
Ω

(δA1 − δA2)2 e
−Ak

1 − e−Ak
2

Ak2 −Ak1
dx

}
,

is positive.

Concerning the coercivity, it is enough to show that

|F(A, Vs)| −−−−−−−−−−−−−→
||A||H1+||Vs||H1→∞

∞ .

In [8] this property has been shown for the first terms X := G+F1 +F2, by

proving that if |X (A, Vs)| < c1 for some constant c1 > 0, than there exists a

constant c2 > 0 such that ||A||H1 + ||Vs||H1 < c2. We can adapt this result in

the present case, by assuming again that ε is a small parameter. Indeed, one

can again incorporate the new terms F3 +F4 in X , by proving the existence

of some constant C > 0, such that

C|X (A, Vs)| ≤ |F(A, Vs)| ,

which proves coercivity. Thus, the functional F , being strictly convexe and

coercive, admits a unique minimum.

Appendix D. Discretization matrices

Let us present here the discretization matrices used for the fully discrete

systems (see Section 4). Let 1 stands for the (N − 2) × (N − 2) identity
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matrix. Then we have the following discretization matrices:

D+
x =

1

∆x



−1 1

0 −1 1

. . .
. . .

. . .

0 −1 1

0 0


∈ IRP×P ,

D−x =
1

∆x



0 0

−1 1 0

. . .
. . .

. . .

−1 1 0

−1 1


∈ IRP×P ,

D+
y =

1

∆y


d+
y

. . .

d+
y

 , D−y =
1

∆y


d−y

. . .

d−y

 ,

D+
y , D

−
y ∈ IRP×P ,

d+
y =



−1 1

0 −1 1

. . .
. . .

. . .

0 −1 1

0 0


∈ IR(N−2)×(N−2) ,

d−y =



0 0

−1 1 0

. . .
. . .

. . .

−1 1 0

−1 1


∈ IR(N−2)×(N−2) ,

D̃x =
D+
x +D−x

2
, D̃y =

D+
y +D−y

2
,
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∆dir = ∆x + ∆y ∈ RP×P ,

∆x =
1

(∆x)2



−21 1

1 −21 1

. . .
. . .

. . .

1 −21 1

1 −21


∈ RP×P .

∆y :=
1

(∆y)2


ly

. . .

ly

 ∈ RP×P .

ly =



−2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −2


∈ IR(N−2)×(N−2) ,

Dx =
1

2∆x



0 1

−1 0 1

. . .
. . .

. . .

−1 0 1

−1 0


∈ IRP×P ,

Dy :=
1

2∆y


dy

. . .

dy

 ∈ RP×P .
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dy =



0 1

−1 0 1

. . .
. . .

. . .

−1 0 1

−1 0


∈ IR(N−2)×(N−2) ,

Db
x =

1

∆x



1 0

−1 1 0

. . .
. . .

. . .

−1 1 0

−1 1


∈ RP×P .

Db
y =

1

∆y


dby

. . .

dby

 ∈ IRP×P ,

dby =



1 0

−1 1 0

. . .
. . .

. . .

−1 1 0

−1 1


∈ IR(N−2)×(N−2) ,
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