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Abstract

Asymptotic quantum transport models of a two-dimensional electron gas
are presented. The starting point is a singular perturbation of the three-
dimensional Schrödinger-Poisson system. The small parameter ε is the scaled
width of the electron gas and appears as the lengthscale on which a one dimen-
sional confining potential varies. The rigorous ε → 0 limit is performed by pro-
jecting the three dimensional wavefunction on the eigenfunctions correspond-
ing to the confining potential. This leads to a two-dimensional Schrödinger-
Poisson system with a modified Poisson equation keeping track of the third
dimension. This limit model is proven to be a first-order approximation of the
initial model. An intermediate model, called the “2.5D adiabatic model” is
then introduced. It shares the same structure as the limit model but is shown
to be a second-order approximation of the 3D model.

Key words : Adiabatic approximation, Energy estimates, Strichartz’ estimates,
error estimates, nonlinear analysis, two dimensional electron gas.

1 Introduction

Systems with reduced dimensionality are the basis of operation of most of nanoscale
electronic devices. Among them, is the two-dimensional electron gas (2DEG) [1, 2, 9],
in which the electrons are strongly confined in one direction so that collisionless
transport is allowed in the two remaining ones. Although the transport is quasi bidi-
mensional, the Coulomb interaction results in a fully three dimensional structure.
Indeed, the particle density is a sheet density concentrated on the two-dimensional
electron gas plane, which generates through mean field interaction a fully three di-
mensional potential. In [17], an approximate Schrödinger-Poisson model taking into
account the quasi-bidimensional nature of electron transport while keeping a three
dimensional description of the electrostatic potential, was proposed and numerically
implemented in the stationary framework for electron waveguide structures. The
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model has been shown numerically to be in a very good agreement with the fully
three dimensional Schrödinger-Poisson system, while having a much lower numerical
complexity. The aim of this paper is to prove by a rigorous asymptotic analysis that
the model introduced in [17] is a good approximation of the fully three-dimensional
model and to quantify the discrepancy between the two models. In order to sim-
plify the setting and to avoid additional technicalities induced by stationarity and by
boundary effects, we shall consider the time-dependent problem in the whole space.
The case of stationary boundary value problems will be the subject of a forthcoming
work by the third author of this paper [16].

Denoting by z the confined direction, we shall consider the following singularly
perturbed Schrödinger-Poisson system:

i∂tψ
ε = −1

2
∆x,z ψ

ε +
1

ε2
Vc

(z
ε

)
ψε + V εψε (1.1)

ψε(0, x, z) = ψε
0(x, z) (1.2)

V ε =
1

4πr
∗
(
|ψε|2

)
, (1.3)

where x ∈ R
2, z ∈ R, r =

√
|x|2 + z2, the potential V ε is the selfconsistent potential

due to space charge effects and the external confinement potential V ε
c (z) = 1

ε2Vc

(
z
ε

)
is

given. In this work, the asymptotic behavior of the solution of this nonlinear system
is studied when ε goes to 0. Two approximate models are exhibited: the limit model
(2D surface density model) and an intermediate ε-dependent model (2.5D adiabatic
model), which is shown to be a more accurate approximation of the initial model.

Quantum systems confined on a surface have been studied previously in [8, 10,
15, 21]. Starting from a similar scaling on the transverse Hamiltonian, these authors
consider the linear Schrödinger equation with a confinement on a general surface and
derive an effective Hamiltonian which locally depends on the curvature properties of
the surface. In our case, the effective Hamiltonian at the leading order is trivial since
the surface is the plane z = 0. The main difficulty here stems from the nonlinear
character of the problem due to the selfconsistent potential.

As remarked in [21], quantum constrained systems can be linked to the Born-
Oppenheimer approximation in molecular dynamics [12, 19, 21]. In order to analyze
this link, let us rescale the variables z, t by setting z̃ = z

ε
, t̃ = t

ε
and let x̃ = x. To

keep densities of order O(1), we also need to rescale ψ by a factor 1√
ε
, hence the

selfconsistent potential is rescaled by 1
ε
. Denoting again (with an abuse of notation)

by ψε and V ε the functions of the new variables, the system takes the form

iε∂t̃ψ
ε = −ε

2

2
∆x̃ψ

ε − 1

2
∂2

z̃ψ
ε + (Vc + εV ε)ψε. (1.4)

The above problem (in the linear case) has been studied in particular in [3, 19].
However, the problem (1.1)–(1.3) is not just a rescaling of the Born-Oppenheimer
asymptotics for two reasons. The first reason is, again, the nonlinear character of
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this system, which might induce rapid time oscillations of V ε. The second reason is
the time scale. Indeed, if the asymptotics is done for times t̃ of order 1 for the Born-
Oppenheimer problem (1.4), then t is of order ε in the initial problem (1.1)–(1.3).
Therefore, since we are here interested in time intervals of order 1 for the variable
t, working in the variable t̃ would necessitate longer time intervals (of the order of
1/ε) which is more difficult. The two problems share however similar properties of
adiabatic decoupling. The systems can be diagonalized by using the eigenspaces
of the transverse Hamiltonian − 1

2
∂2

z + V (in which t and x are frozen). Within
each eigenspace the dynamics is governed by an effective potential and is quantum
in our case, wheras semiclassical behaviour is expected in the Born-Oppenheimer
approximation.

The paper is organized as follows. In Section 2, we first make precise the proper-
ties of the confinement operator, and define the two approximate models (namely the
2D and the 2.5D models). Then we state the main results of this paper, namely The-
orems 2.5, 2.6 and 2.7. Section 3 is devoted to the proof of ε-independent estimates
for (1.1)–(1.3). In Section 4, we put both approximate models into a more general
framework allowing to prove existence and uniqueness of their solutions. The 2.5D
adiabatic model is shown to be a second order approximation in Section 5, while in
Section 6 the 2D surface density model is proven to be only a first order approxima-
tion. Finally, the appendix contains some basic results on the Schrödinger equation
and the Poisson equation which are used all along the paper.

Remark on the scaling. Before going further, and in order to make clear the
physical assumptions made here, let us show how the system (1.1)–(1.3) can be
obtained by a rescaling of the Schrödinger-Poisson system written in the physical
dimensional variables. Let Ψ(T,X, Z), V(T,X, Z) be the solution of

i~∂T Ψ = − ~
2

2m
∆X,Z Ψ + (Vc + V)Ψ (1.5)

V =
e2

4πεM

1√
|X|2 + Z2

∗
(
|Ψ|2

)
, (1.6)

where m is the effective mass, e is the elementary charge of the electrons and εM is
the electric permittivity of the material. We introduce two characteristic energies, Ec

and E, which are respectively the typical energy of the confinement and the typical
kinetic energy of the electrons. The assumption of a strong confinement is

ε2 =
E

Ec
� 1. (1.7)

The confinement operator is the partial Hamiltonian defined on R by − ~2

2m
∂2

∂Z2 + Vc.
Hence we deduce that the typical length Lc of the confinement, defined as the spatial
extension of the eigenvalues of this operator, satisfies ~2

2mL2
c

= Ec , and the confine-

ment potential takes the form Vc(Z) = EcVc(
Z
Lc

), where Vc denotes a dimensionless
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potential. Since we are interested in quantum models for the transport of the elec-
trons, the typical space length L and the typical time T are deduced from the
kinetic energy (this crucial assumption says that the initial data are not oscillating):
~

T = ~2

2mL2 = E, thus (1.7) gives Lc

L
= ε. Finally, we assume that the selfconsistent

potential is of the same order of magnitude as the kinetic energy, which means that
if N0 is the typical density (the scale of |Ψ|2), we have

e2N0L
2

εM
= E.

With these assumptions, setting

t =
T

T , (x, z) =

(
X

L
,
Z

L

)
, ψε =

Ψ√
N0

, V ε =
V
E
,

the system (1.5)-(1.6) is written (1.1)–(1.3) in the dimensionless variables.

2 Notations and main results

Throughout this paper, for any q ∈ [1,∞], we shall denote by q ′ its conjugate and
for any q ∈ [2,∞], we denote by q∗ its 2-conjugate, respectively defined by

q′ =
q

q − 1
; q∗ =

2q

q − 2
.

We define the following functional spaces:

Definition 2.1 Let 1 ≤ p, q, r ≤ +∞. The spaces Lp
xL

q
z and Lr

tL
p
xL

q
z are defined by

Lp
xL

q
z(R

3) =

{
u ∈ L1

loc(R
3), ‖u‖Lp

xLq
z(R3) =

(∫

R2

‖u(x, ·)‖p
Lq(R) dx

)1/p

< +∞
}

(with an obvious generalization of this definition for p = +∞),

Lr
tL

p
xL

q
z((0, T ) × R

3) = Lr((0, T ), Lp
xL

q
z(R

3)).

When there is no ambiguity, we shall simply denote these spaces by Lp
xL

q
z and Lr

tL
p
xL

q
z

and the corresponding norms by ‖ · ‖p,q and by ‖ · ‖r,p,q (when there are two indices,
the variables are (x, z); when there are three indices, the variables are (t, x, z)).

For a function f = f(z) belonging to L1(R), we denote 〈f〉 =
∫

R
f(z)dz. In

particular, if n(t, x, z) is the particle density, the surface particle density is defined
by ns(t, x) = 〈n(t, x, ·)〉 =

∫
R
n(t, x, z) dz.

The symbol ∗ denotes a convolution with respect to all the variables (x, z) ∈ R
3;

partial convolutions are denoted by ∗x and ∗z.
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2.1 Properties of the confinement operator

Let us now introduce the basic assumptions made on the confining potential.

Assumption 2.2 (i) The rescaled confining potential Vc = Vc(z) is a nonnegative
real-valued function in L2

loc(R).

(ii) The operator A = − 1
2

d2

dz2 + Vc defined on L2(R) with the domain

D(A) =
{
u ∈ H2(R) such that Vc u ∈ L2(R)

}

admits a nondegenerate eigenvalue E associated to an eigenfunction χ(z) such that
zχ ∈ L2(R).

The first part of this assumption implies that the operator A is self-adjoint and
nonnegative (see e.g. [18]). The partial Hamiltonian involved in (1.1) is obtained by
rescaling the operator A:

Aε = −1

2

d2

dz2
+ V ε

c = −1

2

d2

dz2
+

1

ε2
Vc

(z
ε

)

and we obtain a pair eigenfunction/eigenvalue of Aε by setting

χε(z) =
1√
ε
χ
(z
ε

)
; Eε =

E

ε2
.

Remark that the assumption on the eigenfunction given in Assumption 2.2 implies
that

∀β ∈ [0, 1] ‖zβ χε‖L2(R) = O(εβ). (2.1)

We shall denote by Xε = span(χε) the corresponding eigenspace and by Πε the
orthogonal projector on this eigenspace. Following the physical literature [1, 2],
we shall call subband of energy level Eε, the space L2(R2, Xε). With an abuse of
notation, we shall also denote by Πε the orthogonal projector I ⊗ Πε of L2(R3) on
L2(R2, Xε).

The following technical lemma will be used several times :

Lemma 2.3 Let V ε ∈ W 1,α(R) with α ∈ [1,+∞]. Then there exists a constant
C > 0 such that

‖[Πε, V ε]‖L(L2(R)) ≤ C ε1−1/α ‖∂zV
ε‖Lα(R),

where [·, ·] denotes the commutator between the two operators.

Proof. Remarking that

[Πε, V ε] = Πε V ε (I − Πε) − (I − Πε)V ε Πε

and that in this difference the second operator is the adjoint of the first one, one can
see that the lemma stems from

‖Πε V ε (I − Πε)‖L(L2(R)) ≤ C ε1−1/α ‖∂zV
ε‖Lα(R).
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In order to prove the above estimate, let U ε(z) = V ε(z) − V ε(0). By orthogonality
of Πε and I − Πε, we have clearly

Πε V ε (I − Πε) = Πε U ε (I − Πε).

Therefore

‖Πε V ε (I − Πε)‖L(L2(R)) ≤ ‖Πε U ε‖L(L2(R)) ≤ ‖χε U ε‖L2(R),

where a Cauchy-Schwarz inequality was used. Besides we have

|U ε(z)| =

∣∣∣∣
∫ z

0

∂zV
ε(y) dy

∣∣∣∣ ≤ |z|1−1/α ‖∂zV
ε‖Lα(R).

Thus we conclude thanks to

‖χε U ε‖2
L2(R) ≤ ‖∂zV

ε‖2
Lα(R)

∥∥z1−1/αχε
∥∥2

L2(R)

≤ C ε2−2/α ‖∂zV
ε‖2

Lα(R) ,

where we used (2.1).

2.2 Definitions of the approximate models and main results

We shall assume that the initial wavefunction belongs to the subband of energy level
Eε. Namely:

Assumption 2.4 (well-prepared data) The initial data ψε
0 of the 3D Schrödin-

ger-Poisson problem (1.1)–(1.3) satisfies

ψε
0 = φ0 χ

ε ∈ H1(R2, Xε).

Let us now write the two approximate models for the 3D Schrödinger-Poisson system
(1.1)–(1.3).

The 2D surface density model

The 2D surface density model is obtained by coupling a two-dimensional Schrödinger
equation and the Poisson equation with a modified Green function. It is given by

i∂tφ = −1

2
∆x φ+Wφ (2.2)

W =
1

4π|x| ∗x

(
|φ|2
)
, (2.3)

with the initial data φ(0, x) = φ0(x) = 〈ψε
0(x, ·)χε〉. The unknowns are φ(t, x),

W (t, x) and the surface density ns(t, x) = |φ|2(t, x), where x ∈ R
2. Remark that
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W (t, x) = V (t, x, 0), where V is the Coulomb potential generated by the sheet density
supported in the plane z = 0 with a surface density ns :

n(t, x, z) = ns(t, x)δ(z) ; V =
1

4πr
∗ n. (2.4)

The 2.5D adiabatic model

The 2.5D adiabatic model is an intermediate model between the fully 3D model and
the 2D surface density one. It takes into account the small thickness of the electron
gas and consists in coupling a two-dimensional Schrödinger equation and the three-
dimensional Poisson equation. The unknowns are φε(t, x), V ε(t, x, z) and the density
nε(t, x, z), where x ∈ R

2 and z ∈ R. This system is written

i∂tφ
ε = −1

2
∆x φ

ε +
〈
V ε|χε|2

〉
φε (2.5)

V ε =
1

4πr
∗
(
|φε|2 |χε|2

)
, (2.6)

with the initial data φε(0, x) = φ0(x) = 〈ψε
0(x, ·)χε〉 and where the function χε(z)

has been defined in Section 2.1. The population of electrons is described by a pure
quantum state which belongs at any time to the subband of energy level E. One
can remark that in the 2.5D adiabatic model, the dynamics on the subband is in-
duced by the effective potential 〈V ε|χε|2〉, which is the potential “modulated” by
the wavefunction χε. Moreover, applying formally the standard perturbation theory
(see [14]), the transverse Hamiltonian − 1

2
d2

dz2 + V ε
c + V ε admits an eigenvalue ε(t, x)

given by

ε =
E

ε2
+
〈
V ε|χ|2

〉
+ O(ε2).

Thus, the above 2.5D adiabatic model can be seen –at least formally– as an ε2-
perturbation of the model given by the adiabatic quantum theory [19] (the constant
E/ε2 can be forgotten in (2.5) since it only induces a phase factor).

The main results of the paper, summarized in the three following Theorems, state
that the 2.5D adiabatic model is (almost) a second order approximation of the 3D
model, while the 2D surface density model is exactly a first order approximation.

Theorem 2.5 Suppose that Assumptions 2.2 and 2.4 are satisfied. Then the 3D
Schrödinger-Poisson system (1.1)–(1.3) and the 2.5D adiabatic model (2.5), (2.6)
admit unique global weak solutions, respectively denoted by (ψ3D, V 3D) and by (φ2.5D,
V 2.5D). Moreover for any T we have

‖ψ3D − φ2.5Dχε e−itE/ε2‖q∗,q,2 = O(ε) ∀q ∈ [2,∞), (2.7)

‖V 3D − V 2.5D‖L1((0,T ),L∞(R3)) = O(ε2−α) ∀α > 0, (2.8)
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Furthermore the surface densities defined by n3D
s = 〈|ψ3D|2〉 and n2.5D

s = |φ2.5D|2
satisfy

‖n3D
s − n2.5D

s ‖L1((0,T ),Lq(R2)) = O(ε2−α) ∀α > 0, ∀q ∈ [1,∞). (2.9)

Theorem 2.6 Suppose that Assumptions 2.2 and 2.4 are satisfied. Then as ε → 0
and for any T > 0 the solution (φ2.5D, n2.5D, V 2.5D) of the 2.5D adiabatic model
converges to the unique solution (φ2D, n2D

s , V 2D) of the 2D surface density model
(2.2), (2.4) in the following sense:

‖φ2.5D − φ2D‖Lq∗((0,T ),W 1,q(R2)) = O(ε) ∀q ∈ [2,∞), (2.10)

‖V 2.5D − V 2D‖Lq((0,T ),L∞(R3)) = O(ε) ∀q ∈ [1,∞), (2.11)

‖n2.5D
s − n2D

s ‖Lq((0,T ),L∞(R2)) = O(ε) ∀q ∈ [1,∞). (2.12)

Theorem 2.7 Suppose that Assumptions 2.2 and 2.4 are satisfied. If moreover we
have

0 < ‖xφ0‖L2(R2) < +∞ and φ0 ∈ H2(R2), (2.13)

then for any T > 0 there exists a constant C > 0 such that the solutions of the 2.5D
adiabatic model and the 2D surface density model satisfy

‖(V 2.5D − V 2D)(t, ·, 0)‖L∞(R2) + ‖(n2.5D
s − n2D

s )(t, ·)‖Lq(R2) ≥ C ε, (2.14)

for any t ∈ [0, T ], q ∈ [1,∞), where C depends on T and q but not on ε.

An immediate consequence of these theorems is the

Corollary 2.8 Under Assumptions 2.2, 2.4, the 3D Schrödinger-Poisson system
converges as ε→ 0 to the 2D surface density model. Moreover, if in addition (2.13)
is satisfied, we have for any T > 0 and q ∈ [1,∞),

C1 ε ≤ ‖V 3D − V 2D‖L1((0,T ),L∞(R3)) + ‖n3D
s − n2D

s ‖L1((0,T ),Lq(R2)) ≤ C2 ε

where the notations of Theorems 2.5 and 2.6 were used.

3 Estimates for the 3D model

In this section we prove some ε-independent estimates for the 3D Schrödinger-Poisson
problem (1.1)–(1.3). We first claim that a straightforward adaptation of the proofs
of [4, 13] allows to show that for any initial data

ψε
0 ∈ H = {φ ∈ H1(R3) :

√
V ε

c ψ ∈ L2(R3)}, (3.1)

(which may depend on ε) and for an arbitrary T > 0, this system admits a unique
weak solution ψε, V ε, such that

ψε ∈ C([0, T ], L2(R3)) ∩ L∞((0, T ), H1(R3)),
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V ε ∈ L∞((0, T ) × R
3) ; ∇x,zV

ε ∈ L∞((0, T ), Lq(R3)) ∀q ∈ (3/2,∞).

Let us define the kinetic energy along the x direction and along the z one, respectively
by:

Eε
kin,x(t) =

∫∫

R3

1

2
|∇xψ

ε(t, x, z)|2 dx dz, ; Eε
kin,z(t) =

∫∫

R3

1

2
|∂zψ

ε(t, x, z)|2 dx dz.

The selfconsistent potential energy and the external potential energy are then re-
spectively defined by:

Eε
pot(t) =

∫∫

R3

1

2
|∇x,zV

ε|2 dx dz ; Eε
ext(t) =

∫∫

R3

V ε
c (z)|ψε(t, x, z)|2 dx dz

and the total energy of the system is

Eε
tot(t) = Eε

kin,x(t) + Eε
kin,z(t) + Eε

pot(t) + Eε
ext(t).

The standard energy estimate for the Schrödinger-Poisson system [4] gives the con-
servation of the total energy:

∀t ≥ 0 Eε
tot(t) = Eε

tot(0). (3.2)

Unfortunately, due to the strong confinement potential V ε
c , the external energy E ε

ext

is of order O(1/ε2). Therefore, (3.2) does not provide directly a bound for the
kinetic energy (expect for the special case where the initial data is concentrated on
the ground state). Nevertheless the Strichartz’ estimates of Appendix A enable to
obtain some estimates independent of ε, without using the energy conservation. The
first step is the following lemma:

Lemma 3.1 Let ψε
0 ∈ L2(R3) and let ψε, V ε be a solution of (1.1)–(1.3). If As-

sumption 2.2 (i) is satisfied, then for any T > 0 we have

∀q ∈ [2,∞) ‖ψε‖q∗,q,2 ≤ C(ψ0), (3.3)

∀q ∈ [1, 3) ‖V ε‖Lq((0,T ),L∞(R3)) ≤ C(ψ0), (3.4)

where C(ψ0) denotes a generic constant which depends only on ‖ψε
0‖L2(R3) (and q),

and q∗ = 2q/(q − 2).

Proof. This proof relies on the Strichartz’ estimates and on the properties of the
Poisson equation studied in Appendices A and B. Let us first recall that the L2

estimate for the Schrödinger equation gives

∀t ∈ [0, T ] ‖ψ(t)‖2,2 ≤ ‖ψε
0‖L2(R3).

Besides, from (B.3) and a Hölder inequality, we deduce that

∀q ∈ (2,∞)

∥∥∥∥
1

r
∗ (fg)

∥∥∥∥
q,∞

≤ C ‖f‖q,2 ‖g‖2,2 ,

9



thus for all t ∈ (0, T ) we have

∀q ∈ (2,∞) ‖V ε(t)‖q,∞ ≤ C(ψ0) ‖ψε(t)‖q,2 .

Hence

‖V ε(t)ψε(t)‖2,2 ≤ ‖V ε(t)‖q,∞ ‖ψε(t)‖q∗,2 ≤ C(ψ0) ‖ψε(t)‖q,2 ‖ψε(t)‖q∗,2 .

Let q be fixed such that q ∈ [4,∞). It is readily seen that

‖ψε‖q∗,2 ≤ ‖ψε‖2/(q−2)
q,2 ‖ψε‖(q−4)/(q−2)

2,2 ,

which leads to
‖V ε(t)ψε(t)‖2,2 ≤ C(ψ0) ‖ψε(t)‖q∗/2

q,2 . (3.5)

For any t ≥ 0, let
Y (t) := ‖ψε‖Lq∗((0,t),Lq

xL2
z).

By using (3.5) and a Hölder inegality, we get

‖V ε ψε‖L1((0,t),L2(R3)) ≤ C(ψ0)
√
t (Y (t))q∗/2.

Consequently the Strichartz’ inequality stated in Lemma A.2 gives

Y (t) ≤ C(ψ0)
(
1 +

√
t (Y (t))q∗/2

)
.

Since Y (0) = 0, this is enough to conclude by continuity that there exists T̃ and

C0 depending only on ‖ψε
0‖L2(R3) and q such that Y (T̃ ) ≤ C0. We deduce (3.3)

for q ≥ 4 by iterating this procedure on the interval (T̃ , 2T̃ ), then on (2T̃ , 3T̃ ),
etc. By interpolation, we also deduce that (3.3) holds true for q ∈ (2, 4). To obtain
(3.4), it is enough to apply (B.5) with p close to 2 and to use (3.3) with q close to 4.

From this lemma, one can deduce the main result of this section:

Proposition 3.2 Assume that the initial data ψε
0 ∈ H (defined by (3.1)) satisfies

‖ψε
0‖L2(R3) + ‖∇xψ

ε
0‖L2(R3) ≤ C (3.6)

and let ψε, V ε be the solution of (1.1)–(1.3). Then, if Assumption 2.2 (i) is satisfied,
we have the following estimates:

∀q ∈ [2,∞) ‖ψε‖q∗,q,2 + ‖∇xψ
ε‖q∗,q,2 ≤ C, (3.7)

‖V ε‖L∞((0,T )×R3) ≤ C, (3.8)

∀q ∈ (2,∞) ‖∇x,zV
ε‖∞,q,∞ ≤ C. (3.9)

Here C denotes a generic constant independent of ε.
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Proof. The first remark is that, thanks to (3.6), the estimates (3.3) and (3.4) given
in the previous lemma are independent of ε. Differentiating (1.1) with respect to x
leads to

i∂t∇xψ
ε = −1

2
∆x ∇xψ

ε + Aε∇xψ
ε + V ε∇xψ

ε + ∇xV
εψε. (3.10)

From (B.4), we deduce that for all t ∈ (0, T ) we have

∀q ∈ (2,∞) ‖∇xV
ε(t)‖q,∞ ≤ C ‖∇x(|ψε(t)|2)‖2q/(2+q),1

≤ C ‖∇xψ
ε(t)‖L2(R3) ‖ψε(t)‖q,2 .

Hence we get, for any q ∈ (2,∞),

‖∇xV
ε‖q′,q,∞ ≤ C ‖∇xψ

ε‖2,2,2 ‖ψε‖q∗,q,2 , (3.11)

since 1
q∗

+ 1
2

= 1
q′

. Therefore we have

‖∇xV
εψε‖1,2,2 ≤ ‖∇xV

ε‖q′,q,∞ ‖ψε‖q,q∗,2 ≤ C ‖∇xψ
ε‖2,2,2 ‖ψε‖q∗,q,2 ‖ψε‖q,q∗,2 .

Since for any q ∈ (2,∞) we have (q∗)∗ = q, by using (3.3) we obtain

‖∇xV
εψε‖1,2,2 ≤ C‖∇xψ

ε‖2,2,2 .

This inequality, combined with the L2 estimate for (3.10), gives

‖∇xψ
ε‖∞,2,2 ≤ ‖∇xψ

ε
0‖L2(R3) + ‖∇xV

εψε‖1,2,2

≤ ‖∇xψ
ε
0‖L2(R3) + C ‖∇xψ

ε‖2,2,2 ,

which leads thanks to a Gronwall argument, to

‖∇xψ
ε‖∞,2,2 + ‖∇xV

εψε‖1,2,2 ≤ C . (3.12)

In a second step, we apply the Strichartz’ estimate (A.5) to (3.10) and obtain

∀q ∈ [2,∞) ‖∇xψ
ε‖q∗,q,2 ≤ C‖∇xψ

ε
0‖L2(R3) +C‖V ε∇xψ

ε‖1,2,2 +C‖∇xV
εψε‖1,2,2 .

Since (3.4) implies

‖V ε∇xψ
ε‖1,2,2 ≤ ‖V ε‖1,∞,∞ ‖∇xψ

ε‖∞,2,2 ≤ C‖∇xψ
ε‖∞,2,2 ,

we deduce the estimate (3.7) from (3.6) and (3.12).
For the last step of this proof, we apply a Sobolev estimate pointwise in time to

the function
u(t, x) = ‖ψε(t, x, ·)‖L2(R) .

To this aim, by using the Cauchy-Schwarz inequality, we first get

|∇xu(t, x)| ≤
(∫

|∇xψ
ε(t, x, z)|2 dz

)1/2

,
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which yields
‖u(t, ·)‖H1(R2) ≤ C‖ψε‖∞,2,2 + C‖∇xψ

ε‖∞,2,2 ≤ C

(apply (3.7) with q = 2 for the last inequality). By Sobolev embeddings, we have

∀p ∈ [2,∞) ‖ψε‖∞,p,2 = ‖u‖L∞

t Lp
x
≤ C, (3.13)

which can be rewritten

∀q ∈ [1,∞)
∥∥|ψε|2

∥∥
∞,q,1

≤ C .

From (B.5) we deduce the L∞((0, T ) × R
3) estimate (3.8). Finally, by combining

(3.13) and (3.7), we deduce that

∀q ∈ (1, 2)
∥∥∇x

(
|ψε|2

)∥∥
∞,q,1

≤ ‖ψε‖∞,2q/(2−q),2 ‖∇xψ
ε‖∞,2,2 ≤ C,

and (3.9) is obtained by applying (B.4).

We end this section with a useful lemma concerning the linear Schrödinger equa-
tion with a strong confining potential. It states that, up to –at least– the first order
in ε, the subspace Xε is stable under the action of the Schrödinger group.

Lemma 3.3 Let ψε
0 ∈ L2(R2, Xε). Assume that V ε ∈ L1((0, T ), L∞(R3)) and that

∂zV
ε ∈ Lr′,r,∞((0, T ) × (R3)) for some r ∈ (2,∞]. Then any solution ψε of (1.1)

satisfies, for all s ∈ [2,∞),

‖(I − Πε)ψε‖s∗,s,2 ≤ C ε ‖∂zV
ε‖r′,r,∞ ‖ψε

0‖L2(R3) ,

where C depends only on ‖V ε‖1,∞,∞.

Proof. Thanks to the conservation of the L2 norm for the Schrödinger equation, a
solution ψε of (1.1) satisfies

‖ψε‖∞,2,2 ≤ ‖ψε
0‖L2(R3),

By using (A.5), we get for any q ∈ [2,∞) :

‖ψε‖q∗,q,2 ≤ C‖ψε
0‖L2(R3) + C‖V ε ψε‖1,2,2 ≤ C‖ψε

0‖L2(R3) (3.14)

(in this lemma, C is a generic constant depending only on ‖V ε‖1,∞,∞).
Denote ωε = (I − Πε)ψε. The assumption on ψε

0 implies ωε(0, x, z) = 0 for
(x, z) ∈ R

3. Besides, the operator I − Πε commutes with ∂t, with ∆x and with Aε

(since Πε is a spectral projector of Aε). Hence (1.1) gives, after direct calculations:





i∂tω
ε = −1

2
∆xω

ε + Aεωε + V εωε − [Πε, V ε]ψε,

ωε(0, x, z) = 0.
(3.15)
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Because of source terms, the L2 conservation becomes

‖ωε‖∞,2,2 ≤ C ‖[Πε, V ε]ψε‖1,2,2 ,

thus from (A.5) with σ ∈ [2,∞) we deduce:

‖ωε‖σ∗,σ,2 ≤ C ‖[Πε, V ε]ψε‖1,2,2 . (3.16)

Besides Lemma 2.3 yields

‖[Πε, V ε]ψε(t, x, ·)‖L2(R) ≤ C ε ‖∂zV
ε(t, x, ·)‖L∞(R) ‖ψε(t, x, ·)‖L2(R).

Hence
‖[Πε, V ε]ψε‖1,2,2 ≤ C ε ‖∂zV

ε‖r′,r,∞ ‖ψε‖r,r∗,2.

An application of (3.14) with q = r∗ gives

‖[Πε, V ε]ψε‖1,2,2 ≤ C ε ‖∂zV
ε‖r′,r,∞ ‖ψε

0‖L2(R3) .

Therefore we deduce the result from this estimate and (3.16).

4 Existence results for the approximate models

In this section we show that the two approximate models (2.5), (2.6) and (2.2), (2.3)
presented in Section 2 are well posed. Let us first remark that the 2.5D adiabatic
model can be rewritten as a two-dimensional Schrödinger-Poisson system with a mod-
ified Green function. Indeed, denoting W ε(x) = 〈V ε|χε|2〉, (2.5), (2.6) is equivalent
to

i∂tφ
ε = −1

2
∆x φ

ε +W εφε (4.1)

W ε(x) = G2.5D ∗x

(
|φε|2

)
, (4.2)

where

G2.5D(x) =

∫

R

∫

R

1

4π (|x|2 + (z − z′)2)1/2
|χε(z′)|2 |χε(z)|2 dz′ dz. (4.3)

With this formulation, both approximate systems have the same structure, they
differ by the kernel of the “Poisson” equation, respectively G2.5D(x) for (4.1), (4.2)
and G2D(x) = 1

4π|x| for (2.2), (2.3). We shall see below that these kernels share the

same properties and that their difference is small (see the proof of Theorem 2.6 in
Section 4.2).
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4.1 A Schrödinger-Poisson system with a general kernel

Let Gε(x) be a general convolution kernel such that Gε ∈ L1
loc(R

2). Consider the
system:

i∂tφ
ε = −1

2
∆x φ

ε +W εφε (4.4)

W ε = Gε ∗ |φε|2, (4.5)

with the initial data φε(0, ·) = φ0. In this problem, the dependency of the functions
in ε comes from the dependency of Gε in this parameter. The energy of this system
has two terms: the kinetic energy along x and the potential energy respectively
defined by

Eε
kin(t) =

1

2

∫

R2

|∇xφ
ε(t, x)|2 dx,

Eε
pot(t) =

1

2

∫

R2

W ε nε
s dx =

1

2

∫∫

R4

Gε(x− x′)nε
s(x)n

ε
s(x

′) dxdx′.

By analogy with the function 1
|x| (see Lemma B.1), we assume that the kernel Gε

satisfies the following property:

Assumption 4.1 The kernel Gε is a nonnegative, even function which belongs to
L1

loc(R
2). Moreover, we assume the following estimates (i) For f ∈ Lq(R2) with

1 < q < 2, then
‖Gε ∗ f‖

Lq#(R2)
≤ C ‖f‖Lq(R2), (4.6)

where q# = 2q
2−q

.

(ii) For f ∈ Lq(R2) ∩ L1(R2) with 2 < q ≤ +∞, the following estimates holds

‖Gε ∗ f‖L∞(R2) ≤ C ‖f‖θ
Lq(R2)‖f‖1−θ

L1(R2), (4.7)

where θ = q
2q−2

. The constants C are assumed independent of ε and f .

Remark. Any kernel of the type Gε(x) = gε(|x|), with gε(|x|) satisfying gε(t) < C/t,
verifies Assumption 4.1.

The following Proposition shows that this system (4.4), (4.5) is well-posed and
gives some ε-independent estimates:

Proposition 4.2 Under Assumption 4.1 and for φ0 ∈ H1(R2), the system (4.4),
(4.5) admits a unique global weak solution. Moreover the total energy of the system
is conserved:

Eε
kin(t) + Eε

pot(t) = Eε
kin(0) + Eε

pot(0) (4.8)

and for any T > 0 the following estimates hold, independently of ε:

‖φε‖Lq∗((0,T ),W 1,q(R2)) ≤ C ∀q ∈ [2,∞), (4.9)

‖W ε‖L∞((0,T ),W 1,q(R2)) ≤ C ∀q ∈ (2,∞). (4.10)
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Proof. The local-in-time existence of a unique weak solution is obtained via a
standard fixed point procedure and is only sketched here. For more details we refer
to [4, 13]. Denoting W ε(ψ) = Gε ∗ |ψ|2, it is enough to show that the application
F : ψ 7→ W ε(ψ)ψ is locally Lipschitz in H1(R2), uniformly in time. To this aim,
we shall make use of the following inequalities obtained by simple arguments like
Sobolev embeddings and Cauchy-Schwartz inequalities

‖fg‖H1(R2) ≤ C‖f‖W 1,4(R2)‖g‖H1(R2) ; ‖fg‖W 1,4/3(R2) ≤ C‖f‖H1(R2)‖g‖H1(R2).
(4.11)

Let Φ and Ψ be two functions in H1(R2). We have

‖F(Ψ) −F(Φ)‖H1(R2) ≤ ‖W ε(Ψ) (Ψ − Φ) ‖H1(R2) + ‖ (W ε(Ψ) −W ε(Φ)) Φ‖H1(R2).

Using the first inequality of (4.11), the r.h.s is controlled by

‖W ε(Ψ)‖W 1,4(R2)‖Ψ − Φ‖H1(R2) + ‖W ε(Ψ) −W ε(Φ)‖W 1,4(R2)‖Φ‖H1(R2).

Besides,

‖W ε(Ψ) −W ε(Φ)‖W 1,4(R2) ≤
∥∥Gε ∗

(
Ψ|2 − |Φ|2

)∥∥
W 1,4(R2)

≤ C
∥∥|Ψ|2 − |Φ|2|

∥∥
W 1,4/3(R2)

≤ C‖Ψ − Φ‖H1(R2)‖Ψ + Φ‖H1(R2),

where (4.6) is used as well as the second inequality of (4.11). By noticing that
W ε(0) = 0, we conclude that

‖F(Ψ) −F(Φ)‖H1(R2) ≤ C‖Ψ‖2
H1(R2)‖Ψ − Φ‖H1(R2)

+C‖Ψ − Φ‖H1(R2)‖Ψ + Φ‖H1(R2)‖Φ‖H1(R2)

which proves that F is locally Lipschitz on H1(R2).

The energy estimate (4.8) shows that the solution is global in time. It can be
obtained in a standard manner by multiplying (4.4) by ∂tφ

ε
, integrating on R

2 and
taking the real part. The key point is that the nonlinear term can be written as
follows:

Re

∫

R2

W εφε ∂tφ
ε
dx =

∫

R2

Gε ∗ |φε|2(x)∂t|φε(x)|2 dx

=
1

4

d

dt

∫∫

R4

Gε(x− x′) |φε(x′)|2 |φε(x)|2 dx =
1

2

d

dt
Eε

pot(t),

where we have symmetrized the formula by using the properties of Gε. The proof
of (4.9) and (4.10) can be done without any difficulty by an adaptation of Lemma
3.1 and Proposition 3.2. The starting point is the L∞((0, T ), H1(R2)) bound of φε

given by the energy estimate and the conservation of charge density. Then we use
successively Assumption 4.1 and standard Strichartz’ estimates in dimension 2 (see
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for instance [7]).

The following Proposition shows the Lipschitz dependency of the solution of (4.4),
(4.5) with respect to the kernel:

Proposition 4.3 Let Gε and G̃ε satisfying Assumption 4.1 and such that Gε− G̃ε ∈
L1(R2). Let φ0 ∈ H1(R2) and denote respectively by (φε, W ε) and (φ̃ε, W̃ ε) the
solutions of (4.4), (4.5) corresponding to these kernels. Then we have

‖φε − φ̃ε‖Lq∗((0,T ),W 1,q(R2)) ≤ C‖Gε − G̃ε‖L1(R2) ∀q ∈ [2,∞), (4.12)

‖W ε − W̃ ε‖Lq((0,T ),L∞(R2)) ≤ C‖Gε − G̃ε‖L1(R2) ∀q ∈ [1,∞), (4.13)

where C is independent of ε.

Proof. Let us denote η = ‖Gε − G̃ε‖L1(R2). For any function f ∈ Lp(R2), p ∈
[1,+∞], we have ∥∥∥(Gε − G̃ε) ∗ f

∥∥∥
Lp(R2)

≤ η ‖f‖Lp(R2). (4.14)

Setting
Rε(x) = (Gε − G̃ε) ∗ |φ̃ε|2,

we have
W ε − W̃ ε = Gε ∗

(
|φε|2 − |φ̃ε|2

)
+Rε. (4.15)

By applying (4.9) and the Sobolev embeddings W 1,2(R2) ↪→ Lq(R2) for all q ∈
[2,+∞), and W 1,p(R2) ↪→ L∞(R2) for all p > 2, we have

‖φ̃ε‖L∞((0,T ),Lq(R2)) + ‖φ̃ε‖Lq((0,T ),L∞(R2)) ≤ C ∀q ∈ [2,∞). (4.16)

Therefore (4.14) yields, for any q ∈ [2,∞),

‖Rε‖L∞((0,T ),Lq(R2)) + ‖Rε‖Lq((0,T ),L∞(R2)) ≤ Cη. (4.17)

In order to estimate the difference W ε − W̃ ε, we set uε := φε − φ̃ε. This function
solves {

i∂tu
ε = −1

2
∆xu

ε +W εuε + (W ε − W̃ ε)φ̃ε

uε(0, ·) ≡ 0.
(4.18)

Thanks to (4.16) we deduce that for any p ∈ (2,∞] and any t ∈ [0, T ]

‖uε‖L∞((0,t),L2(R2)) ≤ C‖W ε − W̃ ε‖L1((0,t),Lp(R2)), (4.19)

and, by using (4.10) and Strichartz’ estimates in dimension 2 [7], we deduce that for
any s ∈ [2,∞) and q ∈ (2,∞] we have

‖uε‖Ls∗ ((0,t),Ls(R2)) ≤ C‖W ε − W̃ ε‖L1((0,t),Lq(R2)). (4.20)
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Let q ∈ (2,+∞). By using (4.16) (and the same estimate for φε) and (4.19), we
obtain ∥∥∥|φε|2 − |φ̃ε|2

∥∥∥
L∞((0,t),Ls(R2))

≤ C‖W ε − W̃ ε‖L1((0,t),Lq(R2)), (4.21)

where s = 2q
2+q

. By (4.6), we deduce

∥∥∥Gε ∗
(
|φε|2 − |φ̃ε|2

)∥∥∥
Lq(R2)

(t) ≤ C

∫ t

0

‖W ε − W̃ ε‖Lq(R2)(τ) dτ.

Consequently (4.15) yields

‖W ε − W̃ ε‖Lq(R2)(t) ≤ C

∫ t

0

‖W ε − W̃ ε‖Lq(R2)(τ) dτ + ‖Rε‖Lq(R2)(t).

Thanks to (4.17), we deduce from a Gronwall argument applied to the above in-
equality that

‖W ε − W̃ ε‖L∞((0,T ),Lq(R2)) ≤ Cη ∀q ∈ (2,∞). (4.22)

From this estimate together with (4.20), (4.16) and (4.19), we deduce that for any
r ∈ (2,∞), s ∈ (2, r∗), we have

∥∥∥|φε|2 − |φ̃ε|2
∥∥∥

Lr((0,T ),Ls(R2))
+
∥∥∥|φε|2 − |φ̃ε|2

∥∥∥
L∞((0,T ),L1(R2))

< Cη.

which leads to (4.13) in view of (4.15), (4.7) and (4.17).

Let us now improve the estimate on φε − φ̃ε and show that (4.12) holds. To this
aim, we first differentiate (4.18) with respect to x and obtain





i∂tv
ε = −1

2
∆xv

ε +W εvε + (∇xW
ε)uε + (∇xW

ε −∇xW̃
ε)φ̃ε + (W ε − W̃ ε)∇xφ̃

ε

vε(0, ·) ≡ 0,

(4.23)
where we have denoted vε = ∇xu

ε. By combining (4.9), (4.10), (4.20) and (4.22), we
get

‖(∇xW
ε)uε + (W ε − W̃ ε)∇xφ̃

ε‖L1((0,T ),L2(R2)) ≤ Cη,

thus, for any q ∈ (2,∞] and t ∈ [0, T ], we have

‖vε‖L2(R2)(t) ≤ Cη + C‖∇xW
ε −∇xW̃

ε‖L1((0,t),Lq(R2)). (4.24)

Besides, by (4.9) and (4.16) and the Young’s inequality (4.14), we get

∥∥∥(Gε − G̃ε) ∗ ∇x|φ̃ε|2
∥∥∥

Lr((0,t),Lq(R2))
≤ Cη ∀q ∈ (2,∞) ∀r ∈ [1, q∗).

Moreover, using (4.16), (4.9) and (4.20), we have for any s ∈ (1, 2)

∥∥∥∇x

(
|φε|2 − |φ̃ε|2

)∥∥∥
L1((0,t),Ls(R2))

≤ Cη + C‖vε‖L1((0,T ),L2(R2)).
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Thus, writing

∇xW
ε −∇xW̃

ε = Gε ∗ ∇x

(
|φε|2 − |φ̃ε|2

)
+ (Gε − G̃ε) ∗ ∇x|φ̃ε|2 (4.25)

and using (4.6), we deduce that for any q ∈ (2,∞)
∥∥∥∇xW

ε −∇xW̃
ε
∥∥∥

L1((0,t),Lq(R2))
≤ Cη + C‖vε‖L1((0,t),L2(R2)).

Inserting this inequality in (4.24) leads through a Gronwall argument to

‖vε‖L∞((0,T ),L2(R2)) ≤ Cη.

Going back to (4.23), it is readily seen from the above two estimates and from
Proposition 4.2 that

‖i∂tv
ε +

1

2
∆vε‖L1((0,T ),L2(R2)) ≤ Cη

which leads to (4.12) through a Strichartz’ estimate.

In Section 6, in order to get the estimates from below of Theorem 2.7, we will
need to deal with strong solutions.

Lemma 4.4 Under Assumption 4.1, let φ0 ∈ H2(R2). Then for any T > 0 the
solution φε of (4.4), (4.5) belongs to L∞((0, T ), H2(R2)) and its norm is bounded
independently of ε.

Proof. Denote uε = ∆xφ
ε. By differentiating twice (4.4) with respect to x, we get

i∂tu
ε = −1

2
∆xu

ε +W εuε + 2∇xW
ε · ∇xφ

ε + ∆xW
εφε.

The source term in this Schrödinger equation on uε writes

2∇xW
ε · ∇xφ

ε + φεGε ∗
(
2|∇xφ

ε|2
)

+ 2φε ReGε ∗
(
φεuε

)
.

The first term ∇xW
ε · ∇xφ

ε can be estimated thanks to (4.9) and (4.10):

‖∇xW
ε · ∇xφ

ε‖L1((0,t),L2(R2)) ≤ ‖∇xW
ε‖L4/3((0,t),L4(R2)) ‖∇xφ

ε‖L4((0,t),L4(R2)) ≤ C.

The second term can be estimated thanks to (4.6):
∥∥φεGε ∗

(
2|∇xφ

ε|2
)∥∥

L1((0,t),L2(R2))

≤ ‖φε‖L3/2((0,t),L3(R2))

∥∥Gε ∗
(
2|∇xφ

ε|2
)∥∥

L3((0,t),L6(R2))

≤ C‖φε‖L3/2((0,t),L3(R2)) ‖∇xφ
ε‖2

L6((0,t),L3(R2)) ≤ C.
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To treat the third term, we also apply (4.6), (4.9) and (4.10):

‖φεGε ∗ (2φεuε)‖L1((0,t),L2(R2))

≤ C‖φε‖L∞((0,t),L3(R2)) ‖Gε ∗ (2φεuε)‖L1((0,t),L6(R2))

≤ C‖φε‖L∞((0,t),L3(R2)) ‖φε‖L∞((0,t),L6(R2) ‖uε‖L1((0,t),L2(R2))

≤ C ‖uε‖L1((0,t),L2(R2)) .

Hence, for any t ≤ T ,

‖uε(t)‖L2(R2) ≤ C + C

∫ t

0

‖uε(τ)‖L2(R2) dτ

which leads to the result thanks to a Gronwall argument.

4.2 Application: proof of Theorem 2.6

Thanks to Lemma B.1 given in the Appendix, the kernel

G2D(x) =
1

4π|x|

of the 2D surface density model (2.2)-(2.3) satisfies clearly Assumption 4.1. More-
over, by using Lemma B.2 and the fact that

∫
R
|χε|2dz = 1, it is readily seen that

the kernel of the 2.5D adiabatic model given by

G2.5D(x) =

∫∫

R2

1

4π (|x|2 + (z − z′)2)1/2
|χε(z′)|2 |χε(z)|2 dz′ dz

also satisfies Assumption 4.1. Therefore an application of Proposition 4.2 gives the
existence of unique weak solutions and estimates independent of ε for the two ap-
proximate models. The first parts of Theorems 2.5 and of Theorem 2.6 are thus
proved.

To conclude the proof of Theorem 2.6, it suffices to apply Proposition 4.3. Indeed,
setting

Hε(x) =
1

4π|x| −G2.5D(x)

=
1

4π|x| −
∫∫

R2

1

4π (|x|2 + (z − z′)2)1/2
|χε(z′)|2 |χε(z)|2 dz dz′

=
1

4π

∫∫

R2

∫ ε|z−z′|

0

ξ

(|x|2 + ξ2)3/2
|χ(z)|2 |χ(z′)|2 dξ dz dz′,
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and noticing that ∫

R2

ξ

(|x|2 + ξ2)3/2
dx = 2π, for ξ > 0,

we deduce from (2.1) that

‖Hε‖L1(R2) =
ε

2

∫∫

R2

|z − z′| |χ(z)|2 |χ(z′)|2 dz dz′ = Cε.

This leads to (2.10), from which we deduce (2.12). In order to prove (2.11), we write

V 2.5D − V 2D =
1

4πr
∗x

(
n2.5D

s − n2D
s

)
+ H̃ε ∗x n

2.5D
s ,

where

H̃ε(x, z) = − 1

4πr
+

1

4πr
∗z |χε|2. (4.26)

It is then enough to remark that
∥∥∥∥

1

4πr
∗x

(
n2.5D

s − n2D
s

)∥∥∥∥
Lq((0,T ),L∞(R3))

≤
∥∥∥∥

1

4π|x| ∗x

(
n2.5D

s − n2D
s

)∥∥∥∥
Lq((0,T ),L∞(R2))

≤ Cε

and that

H̃ε(x, z) =

∫

R

∫ z

(z−z′)

ξ

(|x|2 + ξ2)3/2
|χε(z′)|2 dξ dz′,

which implies

|H̃ε ∗x n
2.5D
s |(t, x, z)

≤ ‖n2.5D
s (t, ·)‖L∞(R2)

∫

R

∫ max(z,z−z′)

min(z,z−z′)

∫

R2

|ξ|
(|x|2 + ξ2)3/2

|χε(z′)|2 dxdξdz′,

= 2π‖n2.5D
s (t, ·)‖L∞(R2)

∫

R

|z′| |χε(z′)|2 dz′ = Cε‖n2.5D
s (t, ·)‖L∞(R2),

and the right-hand side is an O(ε) is view of (2.12).

5 The 2.5D adiabatic model is a second order ap-

proximation

In this section we end the proof of Theorem 2.5, initiated in Section 4.2. Consider
the solution ψ3D, V 3D of (1.1)–(1.3) with the initial data ψε

0 = φ0 χ
ε and the solution

φ2.5D, V 2.5D of (2.5), (2.6), corresponding to the initial data φ0. Assumption 2.4
leads in particular to the uniform in ε estimate

‖ψε
0‖L2(R3) + ‖∇xψ

ε
0‖L2(R3) ≤ C.
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Proposition 3.2 then implies the following uniform bounds:

‖V 3D‖L∞((0,T )×R3) + ‖∇x,zV
3D‖∞,q,∞ ≤ C, 2 < q <∞, (5.1)

‖ψ3D‖q∗,q,2 + ‖∇xψ
3D‖q∗,q,2 ≤ C 2 ≤ q <∞. (5.2)

Furthermore Lemma 3.3 implies

∥∥(I − Πε)ψ3D
∥∥

q∗,q,2
= O(ε), 2 ≤ q <∞. (5.3)

We start by proving (2.8). To this aim, we write

V 3D − V 2.5D =
1

4πr
∗
(
n3D − n2.5D

)

=
1

4πr
∗
(
|Πεψ3D|2 − |χεφ2.5D|2

)
+Rε

a +Rε
b,

(5.4)

where the remainder terms are

Rε
a =

1

4πr
∗ | (I − Πε)ψ3D|2 ; Rε

b =
2

4πr
∗ Re

(
Πεψ3D (I − Πε)ψ3D

)
.

Estimating the remainders Rε
a and Rε

b. On the one hand, estimates (5.3), (B.3)
and (B.5) lead to

‖Rε
a‖1,q,∞ ≤ Cε2 ∀q ∈ (2,∞]. (5.5)

On the other hand, by orthogonality we have 〈Πεψ3D (I − Πε)ψ3D〉 = 0. Conse-
quently (B.9) implies for any q ∈ (2,∞) and pointwise in time

‖Rε
b‖L∞(R3) ≤ C ‖zχε‖1−2/q

L2(R)

∥∥ψ3D
∥∥

2q,2

∥∥(I − Πε)ψ3D
∥∥

2q,2
.

Besides, we deduce from (5.2) and the Sobolev embedding H1(R2) ↪→ Lq(R2) that

∥∥ψ3D
∥∥
∞,q,2

≤
∥∥ψ3D

∥∥
L∞((0,T ),H1(R2,L2(R)))

≤ C. (5.6)

Moreover, by (2.1) we have ‖zχε‖1−2/q

L2(R) = O(ε1−2/q), therefore

‖Rε
b‖L∞(R3) (t) ≤ Cε1−2/q

∥∥(I − Πε)ψ3D
∥∥

2q,2
(t).

Similarly, by (B.8), we have for any α ∈ (0, 1) and q ∈ [2,∞)

‖Rε
b‖q,∞ (t) ≤ C ‖zχε‖1−α

L2(R)

∥∥ψ3D
∥∥

4q
2+αq

,2
(t)
∥∥(I − Πε)ψ3D

∥∥
4q

2+αq
,2

(t)

≤ Cε1−α
∥∥(I − Πε)ψ3D

∥∥
4q

2+αq
,2

(t)

By (5.3), we finally get

∀α ∈ (0, 1) ∀q ∈ [2,∞] ‖Rε
b‖1,q,∞ ≤ Cε2−α, (5.7)
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where the constant C depends only on α.

Estimating the first term in the r.h.s. of (5.4). We shall estimate the difference

wε := Πεψ3D − χεφ2.5De−iEεt.

To this aim, we notice that




i∂tw
ε = −1

2
∆xw

ε + Aεwε + 〈V 3D|χε|2〉wε + f ε + gε,

ωε(0, x, z) = 0,
(5.8)

where

f ε = 〈
(
V 3D − V 2.5D

)
|χε|2〉χεφ2.5De−iEεt ; gε = ΠεV 3D(I − Πε)ψ3D.

Standard L2 estimates for a Schrödinger equation with a source term then imply

‖wε‖∞,2,2 ≤ ‖f ε‖1,2,2 + ‖gε‖1,2,2.

Remarking that
ΠεV 3D(I − Πε) = Πε[Πε, V 3D](I − Πε),

we deduce from Lemma 2.3, (5.1) and (5.3) that

‖gε‖1,2,2 ≤ Cε‖∂zV
3D‖4/3,4,∞‖(I − Πε)ψ3D‖4,4,2 = O(ε2).

Besides, in the same spirit as for the proof of (5.6), applying (4.9) and standard
Sobolev embeddings, we get

∥∥φ2.5D
∥∥

L∞((0,T ),Lq(R2))
≤ C ∀q ∈ [2,∞). (5.9)

Therefore it can be easily seen that for any q ∈ (2,∞] we have

‖f ε‖1,2,2 ≤ C‖V 3D − V 2.5D‖1,q,∞

and we finally obtain

‖wε‖∞,2,2 ≤ C‖V 3D − V 2.5D‖1,q,∞ + O(ε2). (5.10)

Applying the Strichartz’ inequality (A.5) to (5.8) after having noticed the estimate
(5.1), we obtain for any q ∈ (2,∞], s ∈ [2,∞),

‖wε‖s∗,s,2 ≤ C‖V 3D − V 2.5D‖1,q,∞ + O(ε2). (5.11)

This gives the following estimate for the first term of the right-hand side of (5.4), for
any q ∈ (2,∞):
∥∥|Πεψ3D|2 − |χεφ2.5D|2

∥∥
2q

2+q
,1

(t) ≤
(
‖ψ3D‖∞,q,2 + ‖φ2.5D‖L∞((0,t),Lq(R2))

)
‖wε‖∞,2,2

≤ C

∫ t

0

‖V 3D − V 2.5D‖q,∞(τ) dτ + O(ε2),
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where we used (5.6), (5.9) and (5.10).

End of the proof. By applying (B.3) we deduce
∥∥∥∥

1

r
∗
(
|Πεψ3D|2 − |χεφ2.5D|2

)∥∥∥∥
q,∞

(t) ≤ C

∫ t

0

‖V 3D − V 2.5D‖q,∞(τ) dτ + O(ε2),

where q ∈ (2,∞). Consequently (5.4) yields

‖(V 3D − V 2.5D)‖q,∞(t) ≤ C

∫ t

0

‖(V 3D − V 2.5D)‖q,∞(τ) dτ

+‖Rε
a‖q,∞(t) + ‖Rε

b‖q,∞(t) +O(ε2).

Recalling the estimates (5.5) and (5.7) for the remainders, a Gronwall argument
leads to the following bound

‖(V 3D − V 2.5D)‖∞,q,∞ ≤ Cε2−α ∀q ∈ (2,∞), ∀α ∈ (0, 1).

To conclude the proof, we insert this estimate into (5.11) and obtain

‖wε‖s∗,s,2 ≤ Cε2−α, ∀s ∈ [2,∞), ∀α ∈ (0, 1).

Then we remark that we have now, for any q ∈ [2,∞) and s < q∗

∥∥|Πεψ3D|2 − |χεφ2.5D|2
∥∥

s,q,1
≤ Cε2−α, ∀α ∈ (0, 1)

and we apply (B.5). By using again (5.4), (5.5) and (5.7), we find (2.8).
In order to prove (2.7), we simply remark that

‖ψ3D − φ2.5Dχε e−itE/ε2‖q∗,q,2 ≤ ‖wε‖q∗,q,2 + ‖(I − Πε)ψ3D‖q∗,q,2

then use (5.3) and (5.11). To prove (2.9), we remark that

n3D
s − n2.5D

s = |Πεψ3D|2 − |χεφ2.5D|2 + | (I − Πε)ψ3D|2.

6 The 2D surface density model is a first order

approximation

In this section we prove Theorem 2.7, which gives estimates from below, showing that
the accuracy of the limit model is exactly O(ε). We denote respectively by φ2.5D,
V 2.5D and by φ2D, V 2D the solutions of (2.5), (2.6) and (2.2), (2.4). For notational
simplicity, we denote

V 2.5D
0 (t, x) = V 2.5D(t, x, 0) ; V 2D

0 = V 2D(t, x, 0).

Since we assume that the initial data φ0 belongs to H2(R2), an application of Lemma
4.4 gives

‖φ2.5D‖L∞((0,T ),H2(R2)) + ‖φ2D‖L∞((0,T ),H2(R2)) ≤ C. (6.1)
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Moreover, with (2.10) and the Sobolev embedding H1(R2) ↪→ L2q(R2), we obtain

‖n2.5D
s − n2D

s ‖L∞((0,T ),Lq(R2)) ≤ Cε ∀q ∈ [1,∞). (6.2)

Now we recall that

V 2.5D
0 − V 2D

0 =
1

4π|x| ∗x

(
n2.5D

s − n2D
s

)
+ H̃ε(·, 0) ∗x |φ2.5D|2,

where H̃ε is defined in (4.26). Hence, pointwise in time, we get

‖V 2.5D
0 − V 2D

0 ‖L∞(R2) +

∥∥∥∥
1

4π|x| ∗x

(
n2.5D

s − n2D
s

)∥∥∥∥
L∞(R2)

≥
∥∥∥H̃ε(·, 0) ∗x |φ2.5D|2

∥∥∥
L∞(R2)

.
(6.3)

Besides, a straightforward calculation leads to

i∂t(xφ
2.5D) = −1

2
∆x(xφ

2.5D) + V 2.5D(xφ2.5D) + ∇xφ
2.5D,

thus

‖xφ2.5D‖L∞((0,T ),L2(R2)) ≤ ‖xφ0‖L2(R2) + ‖∇xφ
2.5D‖L1((0,T ),L2(R2)) ≤ C,

where we used (4.9). Now let us denote for R > 0, BR = {x ∈ R
2, |x| < R}. We

have

‖φ2.5D‖2
L∞((0,T ),L2(BR)) ≥ ‖φ0‖2

L2(R2)) −
1

R2
‖xφ2.5D‖2

L∞((0,T ),L2(R2))

≥ ‖φ0‖2
L2(R2)) −

C

R2
.

Since by assumption we have ‖φ0‖L2(R2)) = 2η > 0, by choosing R large enough we
have

‖φ2.5D‖L∞((0,T ),L2(BR)) > η,

then

∀t ∈ [0, T ] max
BR

|φ2.5D(t, ·)|2 > η2

πR2
.

By using (6.1) and the Sobolev embedding H2(R2) ↪→ C0,1/2(R2), we deduce finally
that there exists r0 > 0, α > 0 and x0(t) ∈ R

2 defined almost everywhere such that,
for a.e. t ∈ [0, T ], we have

|φ2.5D|2(t, x) > α, ∀x ∈ R
2, such that |x− x0(t)| < r0. (6.4)
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For t ∈ [0, T ], we have

∣∣∣H̃ε(·, 0) ∗x |φ2.5D|2
∣∣∣ (x0(t))

=

∫

R2

∫

R

∫ ε|z′|

0

ξ

(|x′|2 + ξ2)3/2
|χ(z′)|2 |φ2.5D(x0(t) − x′)|2 dξdz′dx′

≥ 2πα

∫

R

∫ ε|z′|

0

∫ r0

r=0

rξ

(r2 + ξ2)3/2
|χ(z′)|2 drdξdz′

= 2πα

∫

R

ε|z′|
(

1 − ε|z′|
r2
0 + (r2

0 + ε2|z′|2)1/2

)
|χ(z′)|2 dz′

≥ C1ε− C2ε
2 ≥ C0ε,

where C0 > 0 and ε is small enough. Therefore, by applying (6.3) and using (B.2),
we have for t ∈ [0, T ],

‖V 2.5D
0 − V 2D

0 ‖L∞(R2) +
∥∥n2.5D

s − n2D
s

∥∥θ

Lq(R2)

∥∥n2.5D
s − n2D

s

∥∥1−θ

L1(R2)
≥ Cε,

with any 2 < q < ∞ and θ = q
2q−2

. Bounding
∥∥n2.5D

s − n2D
s

∥∥
L1(R2)

by Cε in view of

(6.2), one deduces for any q ∈ (2,∞)

‖V 2.5D
0 − V 2D

0 ‖L∞(R2)

ε
+

(∥∥n2.5D
s − n2D

s

∥∥
Lq(R2)

ε

)θ

≥ C ′
0.

Proceeding analogously, we obtain

‖V 2.5D
0 − V 2D

0 ‖L∞(R2)

ε
+

(∥∥n2.5D
s − n2D

s

∥∥
L1(R2)

ε

)1−θ

≥ C ′
0.

Consequently, we deduce that

‖V 2.5D
0 − V 2D

0 ‖L∞(R2) +
∥∥n2.5D

s − n2D
s

∥∥
Lq(R2)

≥ Cε, ∀q ∈ (2,+∞) (6.5)

and
‖V 2.5D

0 − V 2D
0 ‖L∞(R2) +

∥∥n2.5D
s − n2D

s

∥∥
L1(R2)

≥ Cε.

The last inequality implies by a simple interpolation argument that (6.5) actually
holds for q ∈ [1,+∞), which finishes the proof.
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Appendix

A Strichartz’ estimates in Lq
∗
t L

q
xL

2
z

For any q ∈ [2,∞) we recall the notation q∗ = 2q/(q−2): in the usual terminology for
the Strichartz estimates, the pair (q∗, q) is said to be admissible. The space Lq∗

t L
q
xL

2
z

was defined in Section 2. Let us first state an extension of the standard Strichartz
estimate for Schrödinger equations on R

2 with values in a Hilbert space [6, 7, 11, 20]:

Lemma A.1 Let T > 0 and H be a separable Hilbert space. For ψ0 ∈ L2(R2,H) and
g ∈ L1((0, T ), L2(R2,H)), we consider the solution ψ(t, x) ∈ L∞((0, T ), L2(R2,H))
of {

i∂tψ = −1

2
∆xψ + g

ψ(0, ·) = ψ0 .
(A.1)

Then for any q ∈ [2,∞), the function ψ belongs to Lq∗((0, T ), Lq(R2,H)) and satisfies

‖ψ‖Lq∗((0,T ),Lq(R2,H)) ≤ C‖ψ0‖L2(R2,H) + C‖g‖L1((0,T ),L2(R2,H)), (A.2)

where C > 0 denotes a constant.

Proof. Let (·, ·)H denote the scalar product on H and let (χp)p∈N∗ be a Hilbertian
basis of H. We shall make use of the Strichartz estimate for mixed quantum states
proved in [5]. For this, let us introduce the following functional space:

L̃q(R2,H) =

{
ψ ∈ Lq(R2,H) : ‖ψ‖2

�

Lq(R2,H)
=
∑

p≥1

‖ψp‖2
Lq(R2) < +∞

}
,

where we have denoted ψp = (ψ, χp)H (remark that this functional space a priori de-
pends on the choice of the Hilbertian basis χp). This space is continuously embedded
in Lq(R2,H); indeed we have

‖ψ‖Lq(R2,H) =

∥∥∥∥∥
∑

p≥1

|ψp|2
∥∥∥∥∥

1/2

Lq/2(R2)

≤
(
∑

p≥1

∥∥|ψp|2
∥∥

Lq/2(R2)

)1/2

= ‖ψ‖ �

Lq(R2,H). (A.3)

This inequality becomes an equality in the special case q = 2 and we have the

identification L̃2(R2,H) = L2(R2,H).

This functional space L̃q(R2,H) can be identified with the space Lq(λ) introduced
in [5, Definition 2.1] (in dimension 2 instead of dimension 3), with the choice λ =
(1, 1, 1, · · ·) and if ψ is identified with the sequence of its components (ψp)p∈N∗.

Each component ψp satisfies the equation

{
i∂tψp = −1

2
∆xψp + gp

ψp(0, ·) = ψ0,p
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where gp = (g, χp)H and ψ0,p = (ψ0, χp)H. Therefore, an application of [5, Theorem
2.1] (adapted to dimension 2) gives:

‖ψ‖Lq∗((0,T ),
�

Lq(R2,H)) ≤ C‖ψ0‖ �

L2(R2,H)
+ C‖g‖

L1((0,T ),
�

L2(R2,H))

= C‖ψ0‖L2(R2,H) + C‖g‖L1((0,T ),L2(R2,H)).

We conclude the proof by using (A.3).

Let now A be an unbounded operator on H = L2(R) with the domain D(A).
We assume that the operator A is self-adjoint and denote by eitA the unitary group
generated by iA on H. In the paper, the results of the appendix are applied to
the operator A = − 1

2
d2

dz2 + V ε
c . The operator i( 1

2
∆x − A), defined, with an abuse

of notation, as i( 1
2
∆x ⊗ IH − IL2(R2) ⊗ A) on H2(R2,H) ∩ L2(R2,D(A)), generates a

group of isometries on L2(R2,H) = L2(R3). Let us now consider the problem

{
i∂tψ = −1

2
∆xψ + Aψ + f

ψ(0, x, z) = ψ0.
(A.4)

where the source term f(t, x, z) is given. The following result holds

Lemma A.2 Let ψ0 ∈ L2(R3) and f ∈ L1((0, T ), L2(R3)). Then for any q ∈ [2,∞),
the solution ψ of the Schrödinger equation (A.4) belongs to Lq∗

t L
q
xL

2
z((0, T )×R

3) and
satisfies

‖ψ‖q∗,q,2 ≤ C‖ψ0‖L2(R3) + C‖f‖L1((0,T ),L2(R3)), (A.5)

where C denotes a constant independent of the operator A.

Proof. This lemma is a consequence of the above Lemma A.1. Let us denote
φ(t, x, z) = eiAt ψ(t, x; z). Since A commutes with ∂t and ∆x, we have clearly

{
i∂tφ = −∆xφ+ eiAt f
φ(0, x, z) = ψ0.

Therefore φ satisfies (A.1) with g = eiAt f . We conclude the proof by using (A.2),
since eiAt is an isometry on L2(R).

B The Poisson equation with LpxL
1
z densities

This section deals with the convolution product

u =
1

r
∗ f,

where r =
√

|x|2 + z2 and f ∈ Lp
xL

1
z. We recall that throughout this paper x ∈ R

2,
z ∈ R and Lp

xL
q
z = Lp(R2, Lq(R)). We first prove the following result in R

2 with a
convolution kernel more singular than the kernel of the Poisson equation:
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Lemma B.1 (i) Let f ∈ Lp(R2) with 1 < p < 2. Then
∥∥∥∥

1

|x| ∗x f

∥∥∥∥
Lp#

(R2)

≤ Cp ‖f‖Lp(R2), (B.1)

where p# = 2p
2−p

.

(ii) Let f ∈ Lp(R2) ∩ L1(R2) with 2 < p ≤ +∞. Then
∥∥∥∥

1

|x| ∗x f

∥∥∥∥
L∞(R2)

≤ Cp ‖f‖θ
Lp(R2)‖f‖1−θ

L1(R2), (B.2)

where θ = p
2p−2

.

Proof. The first part of the lemma is a straightforward consequence of generalized
Young’s formula [18]. Indeed, the function x 7→ 1

|x| belongs to L2
w(R2) and the

function f is in Lp(R2), thus 1
|x| ∗x f belongs to Lp#

(R2), with 1
p

+ 1
2

= 1 + 1
p# .

In order to prove Item (ii), for any R > 0 we cut the integral into two parts:
∣∣∣∣

1

|x| ∗x f

∣∣∣∣ ≤
∫

|x−x′|<R

|f(x′)|
|x− x′|dx

′ +
1

R
‖f‖L1(R2)

≤ CR
p−2

p ‖f‖Lp(R2) +
1

R
‖f‖L1(R2),

where we used the Hölder’s inequality to estimate the first integral. The value of θ
is obtained after an optimisation of R.

Lemma B.2 (i) Let f ∈ Lp
xL

1
z with 1 < p < 2. Then we have

∥∥∥∥
1

r
∗ f
∥∥∥∥

p#,∞
+

∥∥∥∥∇x,z

(
1

r
∗ f
)∥∥∥∥

p#,1

≤ Cp ‖f‖p,1, (B.3)

where p# = 2p
2−p

. If in addition ∇xf ∈ Lp
xL

1
z then

∥∥∥∥∇x,z

(
1

r
∗ f
)∥∥∥∥

p#,∞
≤ Cp ‖∇xf‖p,1. (B.4)

(ii) Let f ∈ Lp
xL

1
z ∩ L1(R3) with 2 < p ≤ +∞. Then we have

∥∥∥∥
1

r
∗ f
∥∥∥∥

L∞(R3)

+

∥∥∥∥∇x,z

(
1

r
∗ f
)∥∥∥∥

∞,1

≤ Cp ‖f‖θ
p,1 ‖f‖1−θ

L1(R3), (B.5)

where θ = p
2p−2

. If in addition ∇xf ∈ Lp
xL

1
z ∩ L1(R3) then

∥∥∥∥∇x,z

(
1

r
∗ f
)∥∥∥∥

L∞(R3)

≤ Cp ‖∇xf‖θ
p,1 ‖∇xf‖1−θ

L1(R3). (B.6)
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Proof. The two Items (i) and (ii) can be proved similarly by using respectively
Items (i) and (ii) of Lemma B.1. We shall only prove here Item (i). Denoting
u = 1

r
∗ f , we have

‖u(x, ·)‖L∞(R) ≤
1

|x| ∗x ‖f(x, ·)‖L1(R)

and the first part of (B.3) is a consequence of (B.1), since x 7→ ‖f(x, ·)‖L1(R) belongs
to Lp(R2). Now we have

∫

R

|∇xu(x, z)| dz ≤
∫∫∫

R4

|x− x′|
(|x− x′|2 + (z − z′)2)3/2

|f(x′, z′)| dx′ dz′ dz.

= 2

∫

R2

1

|x− x′|‖f(x′, ·)‖L1(R) dx
′

=
2

|x| ∗x ‖f(x, ·)‖L1(R),

where we have just evaluated the integral

∫

R

|x− x′|
(|x− x′|2 + (z − z′)2)3/2

dz =
2

|x− x′| .

Then by using again (B.1) we conclude to the estimate of ‖∇xu‖p#,1. We estimate
‖∂zu‖p#,1 similarly:

∫

R

|∂zu(x, z)| dz ≤
∫∫∫

R4

|z − z′|
(|x− x′|2 + (z − z′)2)3/2

|f(x′, z′)| dx′ dz′ dz.

= 2

∫

R2

1

|x− x′|‖f(x′, ·)‖L1(R) dx
′.

This proves (B.3). Next, in order to prove (B.4) and for i = 1, 2 we write

‖∇x,z ∂xi
u‖p#,1 ≤

∥∥∥∥∇x,z

(
1

r
∗ (∂xi

f)

)∥∥∥∥
p#,1

≤ Cp ‖∂xi
f‖p,1, (B.7)

Together with (B.3) this implies that ∂xi
u belongs to Lp#

(R2,W 1,1(R)). Remark
that W 1,1(R) ↪→ L∞(R). Therefore, ∂xi

u is in Lp#

x L∞
z and satisfies

‖∂xi
u‖p#,∞ ≤ C‖∂z∂xi

u‖p#,1 ≤ Cp ‖∂xi
f‖p,1.

To prove (B.4), it remains to estimate ∂zu. We recall that −∆x,zu = f . Besides, we
remark that

x 7→ ‖f(x, ·)‖L1(R)

belongs to W 1,p(R2) ↪→ Lp#

(R2). Consequently,

‖f‖p#,1 ≤ Cp‖∇xf‖p,1
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and applying (B.7), we get

‖∂zzu‖p#,1 ≤ ‖f‖p#,1 + ‖∆xu‖p#,1 ≤ Cp ‖∇xf‖p,1.

Therefore, as above, ∂zu is bounded in Lp#

(R2,W 1,1(R)), thus in Lp#

x L∞
z .

Lemma B.3 (i) Let f ∈ Lp
xL

1
z, with 1 < p < ∞, be such that

∫
R
f(x, z)dz = 0, x

a.e. and z f ∈ Lp
xL

1
z. Then for any α ∈ (0,min(1, 2/p)) we have

∥∥∥∥
1

r
∗ f
∥∥∥∥

q,∞
≤ C ‖zf‖1−α

p,1 ‖f‖α
p,1, (B.8)

where q = 2p
2−αp

.

(ii) Let f ∈ Lp
xL

1
z, with 2 < p < ∞ be such that

∫
R
f(x, z)dz = 0, x a.e. and

z f ∈ Lp
xL

1
z. Then ∥∥∥∥

1

r
∗ f
∥∥∥∥

L∞(R3)

≤ C ‖zf‖1−2/p
p,1 ‖f‖2/p

p,1 (B.9)

Proof. Denote u = 1
r
∗ f . Since

∫
R
f(x, z)dz = 0, we have

u(x, z) =

∫∫

R3

(
1

(|x− x′|2 + (z − z′)2)1/2
− 1

(|x− x′|2 + z2)1/2

)
f(x′, z′) dx′dz′

=

∫∫

R3

∫ z′

0

(
z − ξ

(|x− x′|2 + (z − ξ)2)3/2

)
f(x′, z′) dξdx′dz′. (B.10)

Then we remark that for any z, ξ and x 6= x′, we have

|z − ξ|
(|x− x′|2 + (z − ξ)2)3/2

≤ 2

3
√

3

1

|x− x′|2 (B.11)

and that
∫ z′

0

|z − ξ|
(|x− x′|2 + (z − ξ)2)3/2

dξ ≤
∫

R

|z − ξ|
(|x− x′|2 + (z − ξ)2)3/2

dξ =
2

|x− x′| . (B.12)

Let us first prove (B.8). By (B.11) and (B.12) we have for any 0 ≤ α ≤ 1

∫

R

∫ z′

0

|z − ξ|
(|x− x′|2 + (z − ξ)2)3/2

|f(x′, z′)|dξdz′ ≤ C

∫

R

|z′f(x′, z′)|1−α

|x− x′|2(1−α)

|f(x′, z′)|α
|x− x′|α dz′

≤ C

|x− x′|2−α
g(x).

where

g(x) =

(∫
|zf(x, z)|dz

)1−α (∫
|f(x, z)|dz

)α

.
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Hence from (B.10) we deduce that

‖u(x, ·)‖L∞(R) ≤ C

(
1

|x|2−α
∗ g
)

(x).

From the assumptions on f , we deduce that g belongs to Lp(R2). Since the function

x 7→ 1
|x|2−α belongs to L

2/(2−α)
w (R2), the generalized Young’s inequality gives (B.8).

In order to prove (B.9), the right-hand side of (B.10) is cut into two parts

∫

R3

=

∫

|x−x′|>R

+

∫

|x−x′|<R

.

By (B.11), the first part is controlled by

C

∫

|x−x′|>R

‖z′f(x′, ·)‖L1(R)

|x− x′|2 dx′ ≤ C

R2/p
‖z′f‖p,1,

while the second integral is estimated, through (B.12), by

C

∫

|x−x′|<R

‖f(x′, ·)‖L1(R)

|x− x′| dx′ ≤ R1−2/p‖f‖p,1.

An optimisation of R leads to (B.9).
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