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Abstract

Global existence and uniqueness of a classical solution of the two dimen-
sional Vlasov equation coupled to the Schrödinger-Poisson system is proven.
The two dimensional driving forces appearing in the Vlasov equation are de-
duced from the electrostatic potential in the Born-Oppenheimer approximation
and take into account the quantum behaviour in the third direction. The elec-
trostatic potential is computed by solving a three dimensional Poisson equa-
tion. The existence and uniqueness of the solution is proven by a fixed point
argument on the Vlasov equation. It relies on the use of an a priori energy
estimate, and on the resolution of the Schrödinger-Poisson system by convex
minimization.

1 Introduction

A coupled Vlasov-Schrödinger-Poisson model was presented and analyzed in [3]. This
system, based on the so-called subbands, models the transport of charges in a nanos-
tructure under a partial confinement. The lengthscale of the confinement direction
is of the same order of magnitude as the de Broglie length of the charges, there-
fore they have a quantum behaviour in this direction, referred to as the tranverse
direction. In the other directions, that we shall call the parallel directions, the length-
scale is larger and the charges are transported semiclassically. The model presented
here takes advantage of these different lengthscales by coupling quantum and kinetic
effects.

The two first authors have studied this system in [3] in a bounded domain and
showed the existence of weak solutions. The aim of this paper is to carry on the analy-
sis of this system in the whole space case and to show the existence and uniqueness
of a strong solution.

More precisely, let us denote by x ∈ R
2 the parallel variable and by z ∈ R the

transverse one. The problem consists in finding, for t ∈ (0, T ), x ∈ R
2, v ∈ R

2, a
distribution function f(t, x, v) solving the Vlasov equation

{
∂tf + v · ∇xf −∇xε · ∇vf = 0,

f(0, x, v) = f0(x, v),
(1.1)
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where ε(t, x) is the first eigenvalue of the following quasistatic Schrödinger problem
in the transverse variable z ∈ R





−
1

2
∂2

zχ + (V + Vext)χ = εχ ,
∫

R

|χ(t, x, z)|2 dz = 1.
(1.2)

The selfconsistent potential V (t, x, z) satisfies the Poisson equation

V =
1

4πr
∗ n ; n =

(∫

R2

f dv

)
|χ|2 , (1.3)

where we have denoted r =
√

|x|2 + z2; the Cauchy datum f0 is given as well as the
external confining potential Vext , which satisfies the following growth condition:

Assumption 1.1 The external potential Vext = Vext(z) belongs to C2(R) and satis-
fies Vext(z) → +∞ as |z| → +∞.

The quasistatic Schrödinger equation (1.2) is an eigenvalue problem in the one-
dimensional variable z, the variables t and x appearing as parameters, and ε can
also be defined by

ε = min
φ ∈ H1(R)
‖φ‖L2(R) = 1

(
1

2

∫

R

∣∣∣∣
d

dz
φ(z)

∣∣∣∣
2

dz +

∫

R

(V + Vext)|φ(z)|2 dz

)
, (1.4)

while χ (unique up to a sign) realizes this minimum. More generally, the eigenvalue
problem (1.2) defines the subbands of the system, which are the eigenspaces of the
partial Hamiltonian − 1

2
∂2

z +V +Vext (its spectrum is discrete thanks to Assumption
1.1). By considering only the first subband in this system, we study here a particular
case of the quantum-kinetic subband problem [3], usually referred to as the electrical
quantum limit in the physics literature [7, 6]. The population of carriers is described
by the transversal wavefunction χ(t, x, z), and the two-dimensional distribution func-
tion f(t, x, v), which is a solution of the Vlasov equation (1.1) driven by the effective,
Born-Oppenheimer, electric field −∇xε (see [18] and references therein for related
problems in quantum chemistry). Collisions are not taken into account in this model
and the charges interact only through the electrostatic potential V (t, x, z) computed
by solving the Poisson equation (1.3). We assume that the initial data satisfies the

Assumption 1.2 The initial data f0 belongs to C1(R4)∩W 1,∞(R4) and satisfies for
any (x, v) ∈ R

4

0 ≤ f0(x, v) ≤ C(1 + |x|)−2γ(1 + |v|)−2γ, (1.5)

for some constant γ > 3. Moreover ∇xf0 ∈ L1(R4), ∇vf0 ∈ L1(R4) and we have

|∇xf0(x, v)| + |∇vf0(x, v)| ≤ C(1 + |v|)−γ. (1.6)
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The main result of this paper is the

Theorem 1.3 Under Assumptions 1.1 and 1.2, the system (1.1)–(1.3) admits glob-
ally in time a unique classical solution.

To prove this theorem, we shall take advantage of the similarities between (1.1)–
(1.3) and the standard Vlasov-Poisson system. Indeed, the system can be seen as a
time-dependent Vlasov equation (1.1) coupled with a quasistatic Schrödinger-Poisson
system (1.2), (1.3) instead of the Poisson equation. The Vlasov equation in our
problem is two-dimensional. Its coupling with the Poisson equation (in dimension 2)
was studied by Ukai and Okabe [19] and by Wollman [20].

Our problem is more complicated than the two-dimensional Vlasov-Poisson sys-
tem (but simpler than the three dimensional one, for which one can refer to [15, 17,
2, 9, 10, 1, 11, 21] and the reviews in [5, 8]). Indeed, the linear Poisson equation
is replaced by the nonlinear Schrödinger-Poisson system. Therefore, an important
part of this work will concern the resolution of this quasistatic problem. Afterwards,
in order to analyze the coupling of this problem with the two-dimensional Vlasov
equation, we shall adapt the proofs developped by Ukai and Okabe in [19] for the
two-dimensional Vlasov-Poisson system. However, due to the three-dimensional na-
ture of the quasistatic Schrödinger-Poisson system, this coupling will only give in a
first step a local-in-time solution. Nevertheless, we can go beyond this difficulty and
construct a global-in-time solution by using a natural energy estimate for the whole
system, which relies on the repulsive nature of the Coulomb interaction.

This paper is organized as follows. Next section is devoted to the analysis of the
Schrödinger-Poisson system for a given f . We show that this system is well posed.
Then in Section 3 we give the natural a priori estimates for the whole system. In
Section 4 we construct the global classical solution. Finally an appendix gives some
useful technical results for the Schrödinger, Vlasov and Poisson equations.

Before going further, let us define some functional spaces that will be used all
along this paper. Like in [19], we introduce for k ∈ N

∗, α ∈ [0, 1), and for a subset
Ω in R

m, the space Bk+α(Ω) of k times continuously differentiable functions on Ω
such that the derivatives until the order k are bounded and Hölder continuous with
exponent α (if α > 0). The set Bα1,k+α2([0, T ] × R

2) denotes the space of functions
f(t, x) which are k times continuously differentiable with respect to the x variable
and such that their derivatives are bounded and Hölder continuous with respect to
the (t, x) variables, with the exponents α1 in the t variable and α2 in the x variable.
For any function f(z), we sometimes use the notation

〈f〉 :=

∫

R

f(z) dz.

For any 1 ≤ p ≤ +∞, 1 ≤ q ≤ +∞ we set

Lp
xL

q
z =

{
f ∈ L1

loc(R
3) such that

(∫

R2

‖f(x, .)‖p
Lq(R)

)1/p

< +∞

}
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(with an obvious generalization for p = +∞). The norm on Lp(Rd), d = 1, 2 or 3,
will be denoted by ‖ · ‖p , while the norm on Lp

xL
q
z will be denoted by ‖ · ‖p,q.

We will need the following Sobolev embedding result:

Lemma 1.4 The space

H = {f ∈ L6(R3) : ∂zf ∈ L2(R3)}

is continuously embedded in L4
xL

∞
z and there exists a constant C > 0 such that

∀f ∈ H, ‖f‖4,∞ ≤ C‖f‖
3/4
6 ‖∂zf‖

1/4
2 . (1.7)

Proof. For almost every x ∈ R
2, the Gagliardo-Nirenberg inequality in dimension

1 gives
‖f(x, ·)‖∞ ≤ C‖f(x, ·)‖

3/4
6 ‖∂zf(x, ·)‖

1/4
2 .

By raising the above inequality to the power 4 and integrating with respect to x we
get

‖f‖4
4,∞ ≤ C

∫

R2

‖f(x, ·)‖3
6 ‖∂zf(x, ·)‖2 dx,

which leads to (1.7) after applying a Hölder inequality.

Finally we shall denote by

K = {f ∈ L6(R3) : ∇x,zf ∈ L2(R3)3} (1.8)

which is a Hilbert space when endowed with the scalar product

∫

R3

∇x,zu ·∇x,zv dxdz

thanks to the Sobolev inequality

∀ V ∈ K ‖V ‖L6(R3) ≤ C‖∇x,zV ‖L2(R3). (1.9)

2 The Schrödinger-Poisson system

This section is devoted to the study of a subproblem of the whole coupled system
(1.1)–(1.3), namely, the quasistatic Schrödinger-Poisson system (1.2), (1.3). We shall
assume along this section that the surface density ρ(x) is given (except in Lemma
2.5, ρ will be independent of time for simplicity, since t appears only as a parameter).
We consider the following equation:





−
1

2
∂2

zχ + (V + Vext)χ = εχ ,
∫

R

|χ(t, x, z)|2 dz = 1,
(2.1)

where ε is specified to be the first eigenvalue of this problem, coupled with the
Poisson equation

V =
1

4πr
∗ (ρ |χ|2). (2.2)
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More precisely, for any function V ∈ L∞(R), we introduce the operator H[V ] =
−1

2
d2

dz2 + (V + Vext) on L2(R) with the domain

D(H) =
{
ψ ∈ H2(R) : Vext ψ ∈ L2(R)

}
.

Some spectral properties of this operator are listed in Appendix A. Thanks to
Assumption 1.1, this operator has a discrete spectrum and the eigenvalues are simple
and will be denoted by εp[V ] for p ≥ 1 (we shall denote by χp[V ] the corresponding
eigenfunction). A triplet (V,ε, χ) is a solution of (2.1), (2.2), if and only if ε(x) =
ε1[V (x, ·)] and χ(x, z) = χ1[V (x, ·)](z) and V is a solution of the nonlinear-nonlocal
elliptic equation

V =
1

4πr
∗
(
ρ |χ1[V ]|2

)
. (2.3)

Theorem 2.1 Let ρ ∈ L1(R2) ∩ L∞(R2) such that ρ ≥ 0. The system (2.1), (2.2)
admits a unique solution such that ε ∈ W 1,∞(R2). Moreover, the following estimates
hold:

‖∇xε‖∞ ≤ C(‖ρ‖
1/3
1 ‖ρ‖2/3

∞ + ‖ρ‖
1/2
1 ‖ρ‖5/6

∞ ), (2.4)

where C is independent of ρ, and

∀x, x′ |∇xε(x) −∇xε(x′)| ≤ Cρ ζ(|x− x′|), (2.5)

where Cρ depends only on the L1 and L∞ norms of ρ and the function ζ is defined
by ζ(y) = y(1 − ln y) for 0 ≤ y ≤ 1 and ζ(y) = y for y > 1. Furthermore, for two
data ρ and ρ̃ in L1(R2) ∩ L∞(R2), the corresponding solutions satisfy

‖ε− ε̃‖W 1,∞(R2) ≤ Cρ,ρ̃ (‖ρ− ρ̃‖1 + ‖ρ− ρ̃‖∞) , (2.6)

where Cρ,ρ̃ depends only on the L1 and L∞ norms of ρ and ρ̃.

2.1 Existence and uniqueness of the solution

Following [12, 13, 14, 3], we shall solve (2.1), (2.2) by a variational method. To this
aim, for ρ given as a nonnegative function in L1(R2) ∩ L∞(R2), we introduce the
functional

J(V ) = J0(V )+Jρ(V ); J0(V ) =
1

2

∫∫

R3

|∇x,zV |2 dxdz ; Jρ(V ) = −

∫

R2

ε1[V ]ρ dx.

We shall see that this functional is convex and Gâteaux differentiable on K defined
by (1.8) (and not in H1 as in [12, 13, 14, 3]) and that its minimizer satisfies the
quasistatic Schrödinger-Poisson system.

Lemma 2.2 Let ρ ∈ L4/3(R2)∩L1(R2) such that ρ ≥ 0. The functional J is coercive,
continuous and strictly convex on K. It admits a single minimizer on K denoted by
V , which is the unique weak solution in K of (2.1), (2.2).
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Proof. The first part of the functional, defined by

J0(V ) =
1

2

∫∫

R3

|∇x,zV |
2 dxdz

is clearly continuous and strictly convex on K. Now we have to ensure that the
functional Jρ is well defined. To this aim, we use the inequality (A.4): for any U , V
in K, we have, pointwise in x,

|ε1[V (x, ·)] − ε1[U(x, ·)]| ≤ ‖V (x, ·) − U(x, ·)‖∞ .

Then we take the L4(R2) norm of this difference, apply Lemma 1.4 and (1.9) and
finally get

‖ε1[V ] − ε1[U ]‖4 ≤ ‖V − U‖4,∞ ≤ C ‖∇x,zV −∇x,zU‖L2(R3) . (2.7)

Taking U = 0 in this expression, we get

‖ε1[V ] − ε1[0]‖4 ≤ C ‖∇x,zV ‖L2(R3) ,

which implies that ε1[V ] ∈ L4(R2) + L∞(R2). Since ρ ∈ L4/3(R2) ∩ L1(R2), the
functional Jρ is well-defined on K. Furthermore, (2.7) proves that the function
U 7→ ε1[U ] is Lipschitz continuous from K to L4(R2). Therefore the functional Jρ is
Lipschitz continuous on K:

|Jρ(V ) − Jρ(U)| ≤ C(ρ) ‖∇x,zV −∇x,zU‖L2(R3) .

Moreover, by (1.4) and pointwise in x, ε1[V ] is defined as the minimum with respect
to φ of the function

E(φ, V ) =
1

2

∫

R

∣∣∣∣
d

dz
φ

∣∣∣∣
2

dz +

∫

R

(V + Vext)|φ|
2 dz

which is affine in V . Thus ε1[V ] is concave with respect to V and Jρ is convex. We
have proved that the functional J is continuous and convex on K. Its coercivity is
obvious, thanks to (2.7), which gives

J(V ) ≥
1

2
‖∇x,zV ‖

2
L2 − C‖ρ‖4/3 ‖∇x,zV ‖L2 − Jρ(0).

Let us now check that the critical points of J are the weak solutions of (2.1),
(2.2). Since ρ ∈ L4/3(R2), we deduce from Lemma A.1 that Jρ is differentiable on
L4

xL
∞
z . Lemma 1.4 insures the embedding K → L4

xL
∞
z which in turn yields the

differentiability of Jρ on K. Moreover, for V , W in K, the derivative of Jρ at V in
the direction W is given by

dV Jρ(W ) = −

∫∫

R3

ρ(x) |χ1[V (x, ·)]|2(z)W (x, z) dx dz.
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Since we also have

dV J0(W ) =

∫∫

R3

∇x,zV · ∇x,zW dxdz,

the proof is complete.

Let us now give some further integrability and regularity properties of the solution
of (2.1), (2.2).

Lemma 2.3 Let ρ ∈ L1(R2) ∩ L∞(R2) such that ρ ≥ 0. Then the solution V , χ, ε
of (2.1), (2.2) satisfies the following estimates:

‖V ‖∞ + ‖ε− ε1[0]‖∞ ≤ C‖ρ‖
1/2
1 ‖ρ‖1/2

∞ , (2.8)

‖∇x,zV ‖∞ + ‖∇xε‖∞ ≤ C(‖ρ‖
1/3
1 ‖ρ‖2/3

∞ + ‖ρ‖
1/2
1 ‖ρ‖5/6

∞ ), (2.9)

where C is independent of ρ, and

‖χ‖W 1,∞(R3) ≤ C(ρ). (2.10)

where C is independent of ρ and the constant C(ρ) only depends on ‖ρ‖1 and ‖ρ‖∞.

Proof. Setting n(x, z) = ρ(x) |χ(x, z)|2, the normalization of the eigenvector χ(x, ·)
in L2(R) implies that

‖n‖1 = ‖ρ‖1 ; ‖n‖∞,1 = ‖ρ‖∞.

Besides, we have

|V (x, z)| =

∣∣∣∣
1

4πr
∗ n

∣∣∣∣ .

By (B.8) with p = ∞, we obtain the estimate of V in (2.8); the L∞ estimate of ε in
(2.8) is deduced from (A.4). Next, (A.6) and (2.8) yield

‖χ‖∞ ≤ C(1 + ‖ρ‖
1/8
1 ‖ρ‖1/8

∞ ),

thus we have
‖n‖∞ ≤ C(‖ρ‖∞ + ‖ρ‖

1/4
1 ‖ρ‖5/4

∞ );

(B.6) and (A.8) give (2.9). Finally (2.10) is obtained by using (2.8), (2.9), (A.6) and
(A.10).

Lemma 2.4 Let ρ ∈ L1 ∩L∞(R2) such that ρ ≥ 0. Then the solution of (2.1), (2.2)
satisfies the estimate

‖∇xε‖∞ ≤ C(ρ) ‖ρ‖1/2
∞ , (2.11)

where C(ρ) is a generic constant which only depends on ‖ρ‖1 and ‖ρ‖2.
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Proof. This lemma will be proved in two steps. First, for any p ∈ [1, 2], we
interpolate the Lp

xL
1
z norm of n = ρ |χ|2 between its L1 norm and its L2

xL
1
z norms

and obtain
‖n‖p,1 ≤ C(ρ).

Next, for any q ∈ (2,∞), the inequality (B.7) with p = 2q/(q + 2) ∈ (1, 2) leads to

∀q ∈ (2,∞) ‖V ‖q,∞ ≤ C(ρ)

and by (A.6) we get

∀q ∈ (4,∞) ‖χ2(x, ·)‖L∞
z
∈ L∞

x + Lq
x ,

with norms bounded by C(ρ). Since ρ ∈ L1(R2) ∩ L2(R2), it is readily seen that

∀p ∈ [1, 2) ‖n‖p,∞ ≤ C(ρ).

Then we apply (B.5) with, for instance, p = 7/4 and get the following estimates
independent of ‖ρ‖∞:

‖V ‖∞ + ‖χ‖∞ ≤ C(ρ). (2.12)

where we have also used (A.6). Now, the second step consists in writing

∇xε =
〈
∇xV |χ|

2
〉
. (2.13)

Applying (B.8) with p = ∞ and using (2.12), we obtain

‖∇xV ‖∞,1 ≤ C‖ρ‖1/2
∞ ‖ρ‖

1/2
1 .

Therefore, (2.13) and the L∞(R3) estimate of χ from (2.12) lead to (2.11).

2.2 Proof of Theorem 2.1

Existence and uniqueness of the solution is dealt with in Lemma 2.2. Inequality
(2.4) was given in (2.9). Let us now prove (2.5) and (2.6). We begin by (2.6).
For simplicity, we shall denote by C instead of Cρ,ρ̃ a positive constant which only
depends on the L∞ and L1 norms of ρ and ρ̃. We shall also use the short notation
‖ ‖ for ‖ ‖1 + ‖ ‖∞. In order to prove (2.6), it is enough to prove that

‖V − Ṽ ‖W 1,∞ ≤ C‖ρ− ρ̃‖1 + ‖ρ− ρ̃‖∞ (2.14)

and then to apply (A.4) and (A.12). The proof of (2.14) will be done in two steps.
First we show the result for the K norm (i.e. for ‖∇x,zV −∇x,zṼ ‖L2), and then we
use this intermediate result to prove the Lipschitz dependence in the W 1,∞ norm.
First step: estimates in K. By using the Euler-Lagrange equations for V and Ṽ ,
we obtain
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∫∫

R3

|∇x,z(V − Ṽ )|2 dx dz =

∫

R2

(ρ− ρ̃)
〈
|χ̃|2(V − Ṽ )

〉
dx

+

∫

R2

ρ
〈
(|χ|2 − |χ̃|2) (V − Ṽ )

〉
dx.

(2.15)

The first term of the right-hand side can be estimated, by using (A.1), as
∫

R2

(ρ− ρ̃)
〈
|χ̃|2(V − Ṽ )

〉
dx ≤ C‖ρ− ρ̃‖6/5‖V − Ṽ ‖6.

The second term is nonpositive. Indeed, the function ε̂(λ) := ε[(V +λ(Ṽ −V ))(x, ·)]

is concave with respect to the real variable λ which implies that d
�

ε
dλ

(0) ≥ d
�

ε
dλ

(1). This
leads, in view of Lemma A.1, to the inequality

∀x ∈ R
2,

〈
(|χ|2 − |χ̃|2)(V − Ṽ )

〉
≤ 0.

A more general version of such an inequality can be found in [12, 13, 14]. Conse-
quently, we have

‖∇x,zV −∇x,zṼ ‖2
2 ≤ C‖ρ− ρ̃‖6/5‖V − Ṽ ‖6

which implies, in view of (1.9),

‖V − Ṽ ‖6 ≤ C‖∇x,zV −∇x,zṼ ‖2 ≤ C ‖ρ− ρ̃‖6/5. (2.16)

By applying (1.7), we have

‖V − Ṽ ‖4,∞ ≤ C ‖ρ− ρ̃‖6/5. (2.17)

Step 2 : bootstrapping. We have

V − Ṽ = δV1 + δV2 ; δVi =
1

4πr
∗ ui, (2.18)

where
u1 = (ρ− ρ̃)|χ̃|2 ; u2 = ρ(|χ|2 − |χ̃|2). (2.19)

For δV1, the estimate is immediate, since (B.5), (B.6) imply

‖δV1‖W 1,∞ ≤ C‖ρ− ρ̃‖ ‖χ‖2
∞ ≤ C‖ρ− ρ̃‖. (2.20)

For δV2, more care is needed. Indeed, (A.11) leads to

‖δV2‖W 1,∞ ≤ C‖χ− χ̃‖∞ ≤ C‖V − Ṽ ‖∞. (2.21)

The proof will be complete, once the inequality

‖V − Ṽ ‖∞ ≤ C‖ρ− ρ̃‖ (2.22)
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is proved. To do so, we deduce from (B.5) that

‖V − Ṽ ‖∞ ≤ ‖δV1‖∞ + ‖δV2‖∞ ≤ C‖ρ− ρ̃‖ + C‖u2‖
2/3
2 ‖u2‖

1/3
1 .

Besides, we deduce from (A.1) and (A.11) that

‖u2‖1 ≤ ‖ρ‖4/3 ‖χ+ χ̃‖∞,1 ‖χ− χ̃‖4,∞ ≤ C‖V − Ṽ ‖4,∞.

Similarly
‖u2‖2 ≤ ‖ρ‖4 ‖χ+ χ̃‖∞,2 ‖χ− χ̃‖4,∞ ≤ C‖V − Ṽ ‖4,∞.

From these inequalities and (2.17), we deduce that

‖V − Ṽ ‖∞ ≤ C‖ρ− ρ̃‖

which shows in view of (2.20) and (2.21) that

‖V − Ṽ ‖W 1,∞ ≤ C‖ρ− ρ̃‖ (2.23)

and concludes the proof of (2.6).

Let us now prove (2.5). This is done in the spirit of [19] ([Lemma 4.1]). We first
deduce from (A.11) that

|χ(x′, z) − χ(x, z)| ≤ C sup
z∈R

|V (x, z) − V (x′, z)|

≤ C |x− x′| ‖V ‖W 1,∞(R3) ≤ C |x− x′|.

Therefore
∣∣∇xε(x′) −

〈
∇xV (x′, ·) |χ(x, ·)|2

〉∣∣ = |〈∇xV (x′, ·) (|χ(x′, ·)|2 − |χ(x, ·)|2)〉|

≤ C |x− x′| ‖∇xV ‖∞ ‖χ‖∞,1 ≤ C |x− x′|.

Consequently, we have

|∇xε(x) −∇xε(x′)| ≤
〈
|∇xV (x′, ·) −∇xV (x, ·)| |χ(x, ·)|2

〉
+ C |x− x′|.

Let us now estimate the integral in the right-hand side:

〈
|∇xV (x′, ·) −∇xV (x, ·)| |χ(x, ·)|2

〉

≤

∫∫∫

R4

G(x− x”, x′ − x”, z − z”) |χ(x, z)|2 |χ(x”, z”)|2 |ρ(x”)| dx” dz” dz

with

G(u, v, w) =

∣∣∣∣
u

(|u|2 + |w|2)3/2
−

v

(|v|2 + |w|2)3/2

∣∣∣∣ .
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As in [19], we cut the integral into two parts, setting d = |x − x′| and Σ = {x” ∈
R

2 : |x− x”| ≤ 2d}. If x” ∈ Σ, we have |x′ − x”| ≤ 3d and we write

G(x− x”, x′ − x”, z − z”) ≤
|x− x”|

(|x− x”|2 + (z − z”)2)3/2
+

|x′ − x”|

(|x′ − x”|2 + (z − z”)2)3/2
.

Then we remark that ∫

R

|u|

(|u|2 + w2)3/2
dw =

C

|u|
. (2.24)

Thus by applying this equality with w = z − z” we obtain

∫∫

R2

∫

Σ

≤ C‖χ‖∞

∫

R

∫

Σ

(
1

|x− x”|
+

1

|x′ − x”|

)
|χ(x, z)|2 |ρ(x”)| dz dx”

= C‖χ‖∞

∫

Σ

(
1

|x− x”|
+

1

|x′ − x”|

)
|ρ(x”)| dx”

≤ Cd ‖ρ‖∞.

On the other hand, for x” ∈ R
2\Σ we have |x′−x”| ≥ |x−x”|− |x−x′| ≥ 1

2
|x−x”|.

Besides, straightforward calculations show that for any (u, v, w) we have

|G(u, v, w)| ≤ max

(
|u− v|

(|u|2 + w2)3/2
,

|u− v|

(|v|2 + w2)3/2

)
.

Therefore, by using again (2.24), we have

∫∫

R2

∫

R2\Σ

≤

∫∫

R2

∫

R2\Σ

|x− x′| |χ(x, z)|2 |χ(x”, z”)|2

(1
4
|x− x”|2 + |z − z”|2)3/2

|ρ(x”)| dx” dz” dz

≤ Cd ‖χ‖∞

∫

|x−x”|>2d

|ρ(x”)|

|x− x”|2
dx”,

≤ Cd

(∫

2d<|x−x”|<R

+

∫

|x−x”|≥R

)
≤ Cd

(
‖ρ‖∞ ln

R

d
+

1

R2
‖ρ‖1

)
,

for any R > 2d. This ends the proof of (2.5).

We end this section with the following result, which deals with a time-dependent
function ρ(t, x):

Lemma 2.5 Let ρ = ρ(t, x) belong to Bα([0, T ]×R
2), where 0 < α < 1, and satisfy

0 ≤ ρ(t, x) ≤ C (1 + |x|)−γ, γ > 3. (2.25)

Then the solution ε of (2.1), (2.2) belongs to Bλα , 2+λα(R2), for any λ ∈ (0, 1−3/γ).

11



Proof. This result stems from the elliptic regularity results and decay estimates for
the potential V . Indeed, since χ decays exponentially as |z| becomes large (see(A.1)),
we immediately deduce from (2.25) that the density n = ρ|χ|2 satisfies

|n(t, x, z)| ≤ C (1 + |x| + |z|)−γ. (2.26)

Besides, since V satisfies (2.8) and (2.9), it is Lipschitz continuous with respect to the
(x, z) variable. Moreover, by (2.23) and the assumption on ρ, V is Hölder continuous
with exponent α with respect to the t variable. Inequality (A.11) thus implies that
χ is Lipschitz continuous with respect to the x variable and Hölder continuous with
exponent α with respect to the t variable. It is also Lipschitz continuous with
respect to the z variable since it is in H2(Rz) and decays exponentially as well as its
z-derivative. Hence n is in Bα and

|n(t, x, z) − n(t′, x′, z′)| ≤ C |(t, x, z) − (t′, x′, z′)|α

which leads, in view of (2.26), to

|n(t, x, z) − n(t′, x′, z′)| ≤ C |(t, x, z) − (t′, x′, z′)|λα (1 + |x| + |z|)−(1−λ)γ (2.27)

if |(x, z)−(x′, z′)| < 1/2. We are now able to apply Proposition 4.1 of Ref. [19] which
insures that V ∈ Bλα,2+λα(R3). This implies the desired regularity for ε, thanks to
Lemma A.4.

3 A priori estimates for the Vlasov-Schrödinger-

Poisson system

3.1 The energy estimate

In this section, we express the physical quantities which are conserved during the
evolution of the system. For this purpose, we introduce different macroscopic quan-
tities. The surface (i.e. integrated with respect to z) charge density and surface
current density (in direction x) are respectively given by

ρ(t, x) =

∫

R2

f(t, x, v) dv ; j(t, x) =

∫

R2

vf(t, x, v) dv

and the charge density is

n(t, x, z) = ρ(t, x) |χ(t, x, z)|2.

The kinetic energy density is given by

Ec(t, x, z) = |χ(t, x, z)|2
∫

R2

v2

2
f(t, x, v) dv +

1

2
|∂zχ(t, x, z)|2ρ(t, x)

and the potential energy density is written

Ep(t, x, z) =
1

2
|∇x,zV (t, x, z)|2 + Vext(z)n(t, x, z).

12



Proposition 3.1 Let (f, χ, V ) be a classical solution of (1.1)–(1.3), under Assump-
tion 1.2. Then the total charge and the total energy of the system are conserved: for
all t > 0 we have

d

dt

∫∫

R3

n(t, x, z) dx dz = 0, (3.1)

d

dt

∫∫

R3

(Ec(t, x, z) + Ep(t, x, z)) dx dz = 0. (3.2)

Proof. An integration of the Vlasov equation with respect to v gives the continuity
equation

∂tρ+ divx j = 0,

which implies (3.1), since
∫∫
n(t, x, z) dx dz =

∫
ρ(t, x) dx. Next, multiplying the

Vlasov equation (1.1) by v2

2
and integrating over x and v, we obtain, after some

integrations by parts,

d

dt

∫∫

R4

v2

2
f dv dx−

∫

R2

εdivx j dx = 0. (3.3)

Thanks to the continuity equation, one can transform the second term as follows:

−

∫

R2

εdivx j dx =
d

dt

∫

R2

ρε dx−
∫

R2

ρ ∂tε dx.

Next we recall the two following identities:

ε =
1

2

〈
|∂zχ|

2
〉

+
〈
|χ|2 (V + Vext)

〉
; ∂tε =

〈
|χ|2 ∂t(V + Vext)

〉
.

Since n = ρ|χ|2 and Vext is independent of t, we deduce that

−

∫

R2

ε divx j dx =
1

2

d

dt

∫∫

R3

ρ |∂zχ|
2 dx dz +

d

dt

∫∫

R3

nV dx dz −

∫∫

R3

n ∂tV dx dz

+
d

dt

∫∫

R3

nVext dx dz.

By the Poisson equation (1.3) we have

∫∫

R3

nV dx dz =

∫∫

R3

|∇x,zV |
2 dx dz ;

∫∫

R3

n ∂tV dx dz =
1

2

d

dt

∫∫

R3

|∇x,zV |
2 dx dz.

Inserting these equalities in (3.3) gives (3.2).
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3.2 L∞ estimate of the surface density

The construction of a classical solution for the coupled Vlasov-Schrödinger-Poisson
system will rely on the following key estimate:

Proposition 3.2 Let (f, χ, V ) be a classical solution of (1.1)–(1.3), under Assump-
tion (1.2). Then for all T > 0 it satisfies the estimate:

sup
t∈[0,T ]

‖ρ(t, ·)‖L∞(R2) ≤ CT ,

where CT is a constant depending only on T and on the data f0.

Proof. Since
∫
|χ|2 dz = 1, the conservation of charge expressed by (3.1) and the

fact that f is nonnegative imply

‖f(t, ·, ·)‖L1(R4) = ‖ρ(t, ·)‖L1(R2) = ‖f0‖L1(R4).

Moreover, as a consequence of this energy estimate (3.2), the second order moment
of the nonnegative f is bounded in L1:

∫∫

R4

v2 f(t, x, v) dv dx ≤ C.

Together with the L∞ estimate ‖f(t, ·, ·)‖L∞(R4) = ‖f0‖L∞(R4), and a standard inter-
polation lemma in two dimensions, this leads to the following bound :

‖ρ(t, ·)‖L2(R2) ≤ C. (3.4)

Hence ρ is bounded in L∞((0, T ), L1(R2) ∩ L2(R2)) and by Lemma 2.4, we have for
any t ∈ [0, T ]

‖∇xε(t, ·)‖∞ ≤ C‖ρ(t, ·)‖1/2
∞ ,

where C only depends on T and on the data of the problem. By applying Lemma
B.2 given in the Appendix, thanks to Assumption 1.2, we get

‖ρ(t, ·)‖∞ ≤ C

(
1 +

∫ t

0

‖∇xε(s, ·)‖2
∞ ds

)

≤ C

(
1 +

∫ t

0

‖ρ(s, ·)‖∞ ds

)
.

which yields the boundedness of ‖ρ‖L∞
t L∞

x
after a Gronwall argument.
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4 Existence and uniqueness of the global classical

solution

As mentioned in the Introduction, the construction of a solution is inspired by the
work of Ukai and Okabe [19], who solved the Vlasov-Poisson system in dimension 2.
The adaptation of this work relies on the fact that the Schrödinger-Poisson system
studied in Section 2 shares similar regularization properties to the Poisson equation.
The global existence of solutions of the two dimensional Vlasov-Poisson system relies
on an L∞ bound for the electric field which is obtained by a Gronwall argument.
This argument fails in the Vlasov-Schrödinger-Poisson problem. The L∞ bound holds
however, but its proof relies on the use of the energy conservation satisfied by the
solution (see Proposition 3.2). This fact induces some changes in the construction of
the solution : namely, we are not able to construct the solution directly on arbitrarily
large time intervals. At variance, the solution is constructed on small intervals,
whose length only depend on some bounds on the initial data. The uniform bound
(Proposition 3.2) on the solution allows to resume the construction on a new small
interval, and so on. Since the length of the intervals stays away from zero, global
existence is deduced.

In order to prove the local existence and uniqueness, we introduce the following
Vlasov-Poisson like system (in dimension 2 here, but this can easily be generalized):





∂tf + v · ∇xf + F [ρ] · ∇vf = 0,

ρ(t, x) =

∫

R2

f(t, x, v) dv

f(0, x, v) = f0(x, v),

(4.1)

where the functional
ρ(t, ·) 7→ F [ρ(t, ·)] ∈ L∞(R2)2,

local in time, is defined on L1(R2)∩L∞(R2) and satisfies the four following properties:

(P1) for any ρ ∈ L1 ∩ L∞(Rd) we have

‖F [ρ]‖∞ ≤ C(‖ρ‖1) ‖ρ‖
β
∞,

where β is a positive real number and C(‖ρ‖1) is a constant which only depends on
‖ρ‖1 ;

(P2) if ρ and ρ̃ belong to L1 ∩ L∞, then

‖F [ρ] −F [ρ̃]‖∞ ≤ Cρ,ρ̃ (‖ρ− ρ̃‖1 + ‖ρ− ρ̃‖∞),

where Cρ,ρ̃ only depends on the L1 and L∞ norms of ρ and ρ̃ ;

(P3) if ρ = ρ(t, x) belongs to Bα([0, T ] × R
2), where 0 < α < 1, and satisfies

(2.25) then there exists α1 > 0 and α2 > 0 such that F [ρ] belongs to Bα1,1+α2(R2);
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(P4) for any x, x′ ∈ R
d, we have

|F [ρ](x) −F [ρ](x′)| ≤ Cρ ζ(|x− x′|),

where Cρ only depends on ‖ρ‖1 + ‖ρ‖∞ and the function ζ was defined in Theorem
2.1.

Under these assumptions, we have the following local existence result:

Proposition 4.1 Let F satisfy Properties (P1), (P2), (P3), (P4) and f0 satisfy
Assumption 1.2. Then (4.1) admits a unique classical solution on a maximal time
interval [0, T0) such that T0 ∈ (0,+∞]. Moreover if T0 < +∞ then we have

sup
t∈[0,T0)

‖ρ(t, ·)‖∞ = +∞.

Proof. We shall first prove the existence of a local in time solution, then show the
uniqueness of this solution.

Existence. The construction of a local in time solution is done by adapting the
work of Ukai and Okabe [19] for the two dimensional Vlasov-Poisson system. We
first define the subset S of B0([0, T ] × R

4), consisting of all the functions g which
satisfy the following conditions:

(i) g ∈ Bα0([0, T ] × R
4),

(ii) ‖g‖Bα0 ≤ M0,

(iii) |g(t, x, v)| ≤ M0(1 + |x|)−γ (1 + |v|)−γ, (t, x, v) ∈ [0, T ] × R
4,

(iv)

∫∫

R4

|g(t, x, v)| dx dv ≤ ‖f0‖1 , t ∈ [0, T ],

(v)

∫

R2

|g(t, x, v)| dv ≤M1(t), (t, x) ∈ [0, T ] × R
2,

where the positive constants T , M0 and α0, as well as the positive nondecreasing
function M1(t), will be precised further. It is readily seen that S is a compact
convex subset of B0([0, T ]× R

4). For any element g ∈ S, we define f := Γ(g) as the
solution of 




∂tf + v · ∇xf + F [ρg] · ∇vf = 0,

ρg(t, x) =

∫

Rd

g(t, x, v) dv

f(0, x, v) = f0(x, v).

(4.2)

Thanks to the properties (P1) to (P4) of F , one can apply Lemma B.1 of the
Appendix. Remark that if g satisfies (i) and (iii) with γ > 2, then ρg ∈ Bα for some
0 < α < α0, thus by (P3), the force field F [ρg] belongs to C0([0, T ], C1 ∩ L∞(R2)).

For any g ∈ S the function Γ(g) is uniquely defined, continuously differentiable,
and satisfies the estimates (B.2), (B.3) and (B.4). In addition, (P1), (P4) and (iv)
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imply that the constants α(F ) and M(F ) appearing in these estimates depend only
on ‖ρ‖∞ : we write these constants α(‖ρ‖∞) and M(‖ρ‖∞) (the functions α(·) and
M(·) are respectively nonincreasing and nondecreasing).

Consequently, the crucial step is to get an estimate for ‖ρ‖∞. This can be done
by using Lemma B.2 and (P1). Let ρf =

∫
f dv and ρg =

∫
g dv, where f solves

(4.2). We have

‖ρf (t, ·)‖∞ ≤ C0

(
1 +

∫ t

0

‖ρg(s, ·)‖
2β ds

)
. (4.3)

Let ρ0 be the positive nondecreasing solution of the integral equation

ρ0(t) = C0

(
1 +

∫ t

0

ρ0(s)
2β ds

)
.

This solution is defined on a maximal interval [0, T0). Let 0 < T < T0. Now we fix
the constants in (i)–(v) as follows:

α0 = α(ρ0(T )) ; M0 = M(ρ0(T )) ; M1(t) = ρ0(t).

If g belongs to S then we have |ρg(t, x)| ≤ ρ0(T ), thus α(‖ρ‖∞) ≥ α0 and M(‖ρ‖∞) ≤
M0: it is clear by (B.2)–(B.4) that f = Γ(g) also satisfies (i), (ii), (iii) and (iv).
Next, since g satisfies (v) and by (4.3), we get

‖ρf (t, ·)‖∞ ≤ C0

(
1 +

∫ t

0

ρ0(s)
2β ds

)
= ρ0(t) = M1(t);

this shows that f also satisfies (v). The set S is thus stable by Γ.
Then, with property (P2), one can prove that Γ is continuous in the B0 topology

(see [19]). This is enough to conclude that it admits a fixed point, which is solution
of (4.1) on a time interval [0, T0). If supt∈[0,T0) ‖ρ(t, ·)‖∞ < +∞ then, by (B.2), (B.3)
and (P3), the solution is in fact defined on the closed interval [0, T0], and one can
extend this solution after T0. This proves the second part of the Proposition.

Uniqueness. It remains to prove the uniqueness of the solution of (4.1). Let f 1 and
f 2 be two classical solutions of (4.1) and let ρ1 and ρ2 be the densities corresponding
to f 1 and f 2. Let us also use the notation

9f9 = ‖f‖L1
x,v

+ ‖f‖L∞
x L1

v
.

By differentiating (4.1) with respect to x or with respect to v, one gets

‖∇xf
1(t, ·, ·)‖1 ≤ ‖∇xF [ρ1]‖∞

∫ t

0

‖∇vf
1(s, ·, ·)‖1 ds,

‖∇vf
1(t, ·, ·)‖1 ≤

∫ t

0

‖∇xf
1(s, ·, ·)‖1 ds,

thus (P3) and a Gronwall lemma imply that ∇xf
1 and ∇vf

1 are bounded in L∞((0, T ), L1∩
L∞(R4)), as well as ∇xf

2 and ∇vf
2.
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Additionally, the difference f = f 1 − f 2 satisfies the equation

∂tf + v · ∇xf + F [ρ1] · ∇vf =
(
F [ρ2] − F [ρ1]

)
· ∇vf

2. (4.4)

Therefore one deduces from Liouville’s theorem that
∫∫

R4

|f(t, x, v)| dx dv ≤

∫ t

0

∫∫

R4

∣∣F [ρ2] − F [ρ1]
∣∣ (s, x)|∇vf

2(s, x, v)| dx dv ds

≤ ‖∇vf
2‖L∞

t L1
x,v

∫ t

0

∥∥F [ρ2] −F [ρ1]
∥∥
∞

(s) ds.

Thanks to Property (P2), we get

∥∥f 2(t) − f 1(t)
∥∥

1
≤ C‖∇vf

2‖L∞
t L1

x,v

∫ t

0

(∥∥ρ2(s) − ρ1
(
s)‖1 +

∥∥ρ2(s) − ρ1
(
s)‖∞

)
ds,

which implies
∥∥f 2(t) − f 1(t)

∥∥
1
≤ C

∫ t

0

9f 2(s) − f 1(s) 9 ds.

Besides, the solution f of (4.4) reads

f(t, x, v) =

∫ t

0

{(
F [ρ2] − F [ρ1]

)
· ∇vf

2
}

(s,X 1(s; t, x, v),V1(s; t, x, v))ds, (4.5)

where the characteristics are given by (i = 1, 2):

dX i

ds
= V i,

dV i

ds
= F [ρi](s,X i), X i(t; t, x, v) = x, V i(t; t, x, v) = v; i = 1, 2.

Thanks to the boundedness of F [ρ1] in some Bα1,1+α2 , uniform bounds on [0, T ] for
X 1, ∇xX

1 and ∇vX
1 are easily obtained. Hence, from (1.6) satisfied by the initial

data, one can deduce (see e.g. [19]) that

|∇vf
2(s,X 1(s; t, x, v),V1(s; t, x, v))| ≤ C(1 + |v|)−γ.

Integrating (4.5) with respect to v, we obtain

‖f 2(t) − f 1(t)‖L∞
x L1

v
≤ C

∫ t

0

∥∥F [ρ2] −F [ρ1]
∥∥
∞

(s) ds ≤ C

∫ t

0

9f 2(s) − f 1(s) 9 ds.

By summing the above inequalities, we obtain

9f 2(t) − f 1(t)9 ≤ C

∫ t

0

9f 2(s) − f 1(s) 9 ds

which leads to f2 ≡ f1.
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Application: proof of Theorem 1.3. To prove Theorem 1.3, we only need
to collect the results obtained in the previous sections. In Section 2, we studied the
mapping ρ 7→ F [ρ] := −∇xε, where ε solves the quasistatic Schrödinger-Poisson
system (2.1), (2.2). Properties (P1), (P2), (P3) and (P4) come respectively from
(2.4), (2.6), Lemma 2.5 and (2.5) (note that we have β = 5/6 in (P1)).

Then the first part of Proposition 4.1 gives the existence of a unique classical
solution on a maximal time interval [0, T0). Finally, the global estimate given in
Proposition 3.2 and the second part of Proposition 4.1 show that T0 = +∞.

Appendix

A Properties of the Schrödinger eigenvalue prob-

lem

In this part, we recall some spectral properties of the operator H[V ] = − 1
2

d2

dz2 +(V +
Vext) on L2(R) with the domain (independent of V )

D(H) =
{
ψ ∈ H2(R) : Vext ψ(z) ∈ L2(R)

}
.

We assume here that Vext satisfies Assumption 1.1 and that V belongs to L∞(R). It
is well-known (see for instance [16]) that this operator is self-adjoint, bounded from
below and has a compact resolvent. Its eigenfunctions (χp)p∈N∗, chosen real-valued,
form an orthonormal basis of L2(R) and its eigenvalues (εp)p∈N∗ form a strictly
increasing sequence of real numbers tending to infinity. Moreover we have

∀a > 0 ∀p ∈ N
∗ ∃Ca,p,V > 0 such that, ∀z ∈ R, |χp(z)| ≤ Ca,p,V e

−a |z|,
(A.1)

where Ca,p,V only depends on a, p, Vext and ‖V ‖∞. The p-th eigenvalue is also given
by the max-min formula

εp[U ] = max
dimEp=p−1

min
φ∈E⊥

p ∩D(H)

‖φ‖
L2(R)=1

(∫

R

1

2

∣∣∣∣
dφ

dz
(z)

∣∣∣∣
2

dz +

∫

R

(U + Vext)(z) |φ(z)|2dz

)
.

(A.2)
Here are two immediate consequences of this formula, where U and V are two func-
tions in L∞(R):

if U ≥ V a.e. on R then ∀p ∈ N
∗ εp(U) ≥ εp(V ). (A.3)

|εp[U ] − εp[V ]| ≤ ‖U − V ‖∞. (A.4)

Next, from

εp[V ] =

∫

R

1

2

∣∣∣∣
dχp

dz
(z)

∣∣∣∣
2

dz +

∫

R

(V + Vext)(z) |χp(z)|
2dz (A.5)
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and (A.4) with U = 0, we obtain

‖χp[V ]‖2
H1(R) ≤ Cp + ‖V ‖L∞(R).

Therefore, by a Gagliardo-Nirenberg inequality, we deduce that

‖χp[V ]‖L∞(R) ≤ Cp (1 + ‖V ‖
1/4
L∞(R)). (A.6)

The following differentiability result is standard:

Lemma A.1 For any p ∈ N
∗, the mapping V 7→ εp[V ] is differentiable on L∞(R)

and we have
∀W ∈ L∞(R) dV εp(W ) =

〈
W |χp|

2
〉
.

The following lemma, also given without proof, contains additional information on
the differential of the eigenfunctions and eigenvalues when the potential depends on
a parameter:

Lemma A.2 Let V = V (x, z) ∈ L∞(R3). Let us denote εp(x) instead of εp[V (x, ·)]
and analogously for χp(x, ·). Assume that ∇xV ∈ L1

loc(R
2, L∞(R)).

(i) Then ∇xεp ∈ L1
loc(R

2) and we have

∇xεp =
〈
|χp|

2 ∇xV
〉

(A.7)

|∇xεp(x)| ≤ C ‖∇xV (x, ·)‖L∞(R), (A.8)

where C is independent of V .
(ii) Furthermore, there exists a parametrization χp(x, ·) such that ∇xχp belongs to
L1

loc(R
2, L∞(R)) and we have

∇xχp =
∑

q 6=p

〈χp χq ∇xV 〉

εp − εq
χq , (A.9)

‖∇xχp(x, ·)‖L∞(R) ≤ CV ‖∇xV (x, ·)‖L∞(R), (A.10)

where the constant CV only depends on ‖V ‖L∞(R3) and not on the index p.

From this lemma one can deduce the following

Corollary A.3 (i) Let V and Ṽ be in L∞(R). Then for any p ∈ N
∗, the corre-

sponding p-th eigenfunctions satisfy

‖χp[V ] − χp[Ṽ ]‖L∞(R) ≤ CV,Ṽ ‖V − Ṽ ‖L∞(R). (A.11)

(ii) Let V and Ṽ be in W 1,∞(R2, L∞(R)). Then the corresponding eigenvalues satisfy

‖∇xεp[V ] −∇xεp[Ṽ ]‖L∞(R3) ≤ CV,Ṽ ‖∇xV −∇xṼ ‖L∞(R3). (A.12)

In this lemma, the constant CV,Ṽ only depends on p, ‖V ‖∞ and ‖Ṽ ‖∞.

We end this section by the following Lemma –also standard and stated without
proof– which says that ε has the same regularity as V with respect to x:

Lemma A.4 If V ∈ Bk+α(R2, L∞(R)), for k ∈ N and 0 ≤ α < 1, then the corre-
sponding eigenvalues εp[V ] belong to Bk+α(R2) and the map V 7→ εp[V ] is locally
Lipschitz continuous in these spaces.
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B Results concerning the Vlasov and the Poisson

equations

Consider the Vlasov equation in dimension d
{
∂tf + v · ∇xf + F · ∇vf = 0,

f(0, x, v) = f0(x, v),
(B.1)

where F (t, x) denotes a generic force field defined on [0, T ] × R
d and belonging to

C0([0, T ], C1(Rd)). Then, if f0 is continuously differentiable, (B.1) admits a unique
classical solution f ∈ C1([0, T ] × R

2d). This solution can be written simply thanks
to the characteristic equations, which are defined by X (s; t, x, v), V(s; t, x, v) solving

dX

ds
= V,

dV

ds
= F (s,X ), X (t; t, x, v) = x, V(t; t, x, v) = v.

Indeed, we have
f(t, x, v) = f0(X (0; t, x, v),V(0; t, x, v)).

The following lemma is taken from [19, Proposition 6.1–Lemma 6.1]:

Lemma B.1 Let F (t, x) be in C0([0, T ], C1(Rd) ∩ L∞(Rd)) and let

µ = sup
(t,x,x′)∈[0,T ]×R2d

|F (t, x) − F (t, x′)|

ζ(|x− x′|)
,

where the function ζ was defined in Theorem 2.1. Assume that f0 satisfies As-
sumption 1.2. Then there exists a nonincreasing function α(·) and a nondecreasing
function M(·) such that the solution of (B.1) satisfies the following estimates:

‖f‖Bα(F ) ≤ M(F ), (B.2)

|f(t, x, v)| ≤ M(F ) (1 + |x|)−γ (1 + |v|)−γ, (B.3)
∫∫

R4

|f(t, x, v| dx dv = ‖f0‖1. (B.4)

where we have denoted for simplicity α(F ) = α(µ + ‖F‖∞) and M(F ) = M(µ +
‖F‖∞).

Another classical result is that the L∞ norm of the density is controlled by the
L∞ norm of the field. Denoting ρ(t, x) =

∫
Rd f(t, x, v) dv, we have the

Lemma B.2 Let f0 satisfy

|f0(x, v)| ≤ C (1 + |x|)−γ (1 + |v|)−γ,

where γ > d. Then the solution of (B.1) satisfies

|ρ(t, x)| ≤ C

(
1 +

∫ t

0

‖F (s, ·)‖d
∞ ds

)
.
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Proof. The proof is standard and can be found for example in [19].

The following lemma gives some estimates on the solution of the Poisson equation
in dimension 3 (see for instance [1]):

Lemma B.3 Let f ∈ L1(R3) ∩ Lp(R3), with 3/2 < p ≤ ∞. Then we have

∥∥∥∥
1

r
∗ f

∥∥∥∥
∞

≤ C‖f‖θ
p ‖f‖

1−θ
1 , (B.5)

with θ = p
3p−3

. Moreover, if p = ∞ we have

∥∥∥∥∇x,z

(
1

r
∗ f

)∥∥∥∥
∞

≤ C‖f‖2/3
∞ ‖f‖

1/3
1 . (B.6)

We conclude this appendix by the following Lemma which was proven in [4]. It deals
with the convolution in dimension 3 of the Poisson kernel 1

4πr
with Lp

xL
1
z densities:

Lemma B.4 (i) Let f ∈ Lp
xL

1
z with 1 < p < 2. Then we have

∥∥∥∥
1

r
∗ f

∥∥∥∥
p#,∞

+

∥∥∥∥∇x,z

(
1

r
∗ f

)∥∥∥∥
p#,1

≤ Cp ‖f‖p,1, (B.7)

where p# = 2p
2−p

.

(ii) Let f ∈ Lp
xL

1
z ∩ L

1(R3) with 2 < p ≤ ∞. Then we have

∥∥∥∥
1

r
∗ f

∥∥∥∥
∞

+

∥∥∥∥∇x,z

(
1

r
∗ f

)∥∥∥∥
∞,1

≤ Cp ‖f‖
θ
p,1 ‖f‖

1−θ
1 , (B.8)

where θ = p
2p−2

.
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